
Lidar Toolbox™
Reference

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Lidar Toolbox™ Reference
© COPYRIGHT 2020–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
September 2020 Online only New for Version 1.0 (R2020b)
March 2021 Revised for Version 1.1 (R2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Apps
1

Objects
2

Functions
3

iii

Contents

Apps

1

Lidar Labeler
Label ground truth data in lidar point clouds

Description
The Lidar Labeler app enables you to label objects in a point cloud or a point cloud sequence. The
app reads point cloud data from PLY, PCAP, LAS, LAZ, ROS and PCD files. Using the app, you can:

• Define cuboid region of interest (ROI) labels and scene labels. Use them to interactively label your
ground truth data.

• Define attributes for the labels and use them to provide further detail about the labels.
• Use built-in algorithms for clustering, ground plane segmentation, automated labeling, and

tracking.
• Save label definitions, point cloud data, and ground truth data to a session file for future use.
• Use the Projected View option to view the labels in top, front and side views simultaneously.
• Use the Camera View option to create and reuse custom views of the point cloud data.
• Use the Auto Align option to rotate and best fit the cuboid to the cluster.
• Use the lidar.syncImageViewer.SyncImageViewer class to sync the app to an external

visualization or analysis tool.
• Write, import, and use a custom automation algorithm for automated labeling.
• Evaluate the performance of your label automation algorithms with a visual summary.
• Export the labeled ground truth as a groundTruthLidar object. This object can be used for

system verification and training an object detector.

To learn more about this app, see “Get Started with the Lidar Labeler”.

1 Apps

1-2

Open the Lidar Labeler App
• MATLAB® Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter lidarLabeler.

Examples
• “Get Started with the Lidar Labeler”
• “Choose an App to Label Ground Truth Data”
• “Keyboard Shortcuts and Mouse Actions for Lidar Labeler”

 Lidar Labeler

1-3

Programmatic Use
lidarLabeler opens a new session of the app, enabling you to label ground truth data in point
clouds.

lidarLabeler(velodyneLidarFileName,deviceModel,calibrationFile) opens the app and
loads the velodyneLidarFileName.

lidarLabeler(ptCloudSeqFolder) opens the app and loads the point cloud sequence from the
folder ptCloudSeqFolder, where ptCloudSeqFolder is a string scalar or character vector
specifying a folder that contains point cloud files. The point cloud files must have extensions
supported by pcformats, and are loaded in the order returned by the dir function.

lidarLabeler(lasSeqFolder) opens the app and loads the LAS sequence from the folder
lasSeqFolder, where lasSeqFolder is a string scalar or character vector specifying a folder
contains LAS files. LAS files must have extensions supported by lasformats, and are loaded in the
order returned by the dir function.

lidarLabeler(___ ,'SyncImageViewerTargetHandle',syncImageViewer) opens the app
and loads both of these components:

• A point cloud signal, specified using any of the input argument combinations from previous
syntaxes.

• An external video or image sequence display tool that is time-synchronized with the specified
point cloud signal.

The syncImageViewer input is a handle to a lidar.syncImageViewer.SyncImageViewer class
that implements the external tool.

For example, this code opens the app with a point cloud signal and synchronized video visualization
tool.
sourceName = fullfile(toolboxdir('lidar'),'lidardata','lcc', ...
 'HDL64','pointCloud');
lidarLabeler(sourceName,'SyncImageViewerTargetHandle',@SyncImageDisplay)

lidarLabeler(sessionFile) opens the app and loads a saved app session sessionFile. The
sessionFile input contains the path and file name of a MAT-file. The MAT-file that sessionFile
points to contains the saved session.

Limitations
• The labels do not support sublabels.
• The Label Summary window does not support sublabels.

More About
ROI Labels and Attributes

On the left side of the app, the ROI Labels pane contains the ROI label definitions that you can mark
on the point cloud frames. You can create label definitions directly from this pane. Alternatively, you
can create label definitions programmatically by using a labelDefinitionCreatorLidar object
and then import these label definitions into an app session.

1 Apps

1-4

The app supports the definition of ROI labels and attributes.

ROI Labels

An ROI label is a label that corresponds to an ROI in a signal frame. This table describes the
supported label type.

ROI
Label

Descrip
tion

Example

Cuboid Draw
cuboidal
ROI
labels
around
objects.

ROI Attributes

An ROI attribute specifies additional information about an ROI label. For example, in a driving scene,
attributes might include the type or color of a vehicle. This table describes the supported attribute
types.

Attribute Type Sample Attribute Definition Sample Default Values
Numeric Value

String

Logical

 Lidar Labeler

1-5

Attribute Type Sample Attribute Definition Sample Default Values
List

Tips
• Use the lidar.syncImageViewer.SyncImageViewer class to create a tool for viewing the

image corresponding to the point cloud data.
• Remove the ground plane to clearly view the created object labels.
• Use the rotate, translate, expand, and shrink options to edit the cuboids after drawing them.
• Use the Camera View option to save the a view of the data from the current angle and direction.
• To avoid having to relabel ground truth with new labels, organize the labeling scheme you want to

use before you begin marking your ground truth.
• You can copy and paste the labels between signals that are of the same type.

Algorithms
You can use label automation algorithms to speed up labeling within the app. To create your own
label automation algorithm to use within the app, see “Create Automation Algorithm for Labeling”.
You can also use one of the built-in algorithms by following these steps:

1 Import the data you want to label, and create at least one label definition.
2 On the app toolstrip, click Select Algorithm and select one of the built-in automation

algorithms.
3 Click Automate, and then follow the automation instructions in the right pane of the automation

window.

1 Apps

1-6

Lidar Object Tracker

Track an object through the point cloud frame. To use this algorithm, you must draw a cuboid ROI on
an object you wish to track. You can also draw multiple cuboid ROIs to track more than one label.
Running the algorithm provides tracking data of the labels that you can accept or reject. You can also
undo the run and perform it again.

The step by step procedure is displayed on app when you select the Lidar Object Tracker algorithm.

Point Cloud Temporal Interpolator

Estimate cuboid ROIs between point cloud frames by interpolating the ROI locations across the time
interval. To use this algorithm, you must draw a cuboid ROI on a minimum of two frames: one at the
beginning of the interval and one at the end of the interval. The interpolation algorithm estimates and
draws ROIs in the intermediate frames.

Consider a point cloud sequence with 10 frames. The first frame has a cuboid ROI centered at [5, 5,
0]. The 10th frame has a cuboid ROI centered at [25, 25, 0]. At each frame, the algorithm moves the
ROI 2 points in the x-direction, 2 points in the y-direction, and 0 points in the z-direction. Therefore,
the algorithm centers the ROI at [7, 7, 0] in the second frame, [9, 9, 0] in the third frame, and so on,
up to [23, 23, 0] in the second-to-last frame.

See Also
Apps
Image Labeler | Video Labeler

Objects
groundTruthLidar | labelDefinitionCreatorLidar

Classes
lidar.syncImageViewer.SyncImageViewer

Topics
“Get Started with the Lidar Labeler”
“Choose an App to Label Ground Truth Data”
“Keyboard Shortcuts and Mouse Actions for Lidar Labeler”

Introduced in R2020b

 Lidar Labeler

1-7

Lidar Camera Calibrator
Interactively estimate rigid transformation between lidar sensor and camera

Description
The Lidar Camera Calibrator app enables you to interactively estimate the rigid transformation
between a lidar sensor and a camera. The app performs calibration by reading the calibration images
and point clouds captured by the user. The app reads point cloud data in the PLY and PCAP formats,
and images in any format supported by imformats.

Using the app, you can:

• Detect, extract, and visualize checkerboard features from image and point cloud data.
• Estimate the rigid transformation between the camera and the lidar using feature detection

results.
• Use the calibration results to fuse data from both the sensors. You can visualize point cloud data

projected onto the images, and color or grayscale information from the images fused with point
cloud data.

• View the plotted calibration error metrics. You can remove outliers, using a threshold line, and
recalibrate the remaining data.

• Define a region of interest (ROI) around the checkerboard to reduce the computation resources
required by the transformation estimation process.

• Export the transformation and error metric data as workspace variables or MAT files. You can also
create a MATLAB script for the entire workflow.

1 Apps

1-8

Open the Lidar Camera Calibrator App
• MATLAB Toolstrip: On the Apps tab, under Image Processing and Computer Vision, click the

app icon.
• MATLAB command prompt: Enter lidarCameraCalibrator.

Examples

Start and Load Parameters into Lidar Camera Calibrator App

Define paths to the image and point cloud files.

imageFilesPath = fullfile(toolboxdir('lidar'),'lidardata',...
 'lcc','vlp16','images');
pcFilesPath = fullfile(toolboxdir('lidar'),'lidardata',...
 'lcc','vlp16','pointCloud');

Load the checker size and padding values of the checkerboard.

checkerSize = 81; % millimeters
padding = [0 0 0 0]; % millimeters

Launch the app with these parameters.

lidarCameraCalibrator(imageFilesPath,pcFilesPath,checkerSize,padding)

• “Read Lidar and Camera Data from Rosbag File”

Programmatic Use
lidarCameraCalibrator opens a new session of the Lidar Camera Calibrator app.

lidarCameraCalibrator(sessionFile) opens the Lidar Camera Calibrator app and loads a
previously saved app session, sessionFile.

lidarCameraCalibrator(imageFilesPath,pcFilesPath,checkerSize,padding) opens a
new session of the app and loads the specified input data. The app reads image files from
imageFilesPath and point cloud files from pcFilesPath. Both of these arguments must be valid
folders containing images and point clouds, respectively. checkerSize is the square checker
dimension of the checkerboard used in calibration and padding contains the padding values of the
checkerboard, specified as a positive numeric scalar in millimeters.

See Also
Functions
bboxCameraToLidar | bboxLidarToCamera | detectRectangularPlanePoints |
estimateCheckerboardCorners3d | estimateLidarCameraTransform | fuseCameraToLidar
| projectLidarPointsOnImage

Topics
“Read Lidar and Camera Data from Rosbag File”

 Lidar Camera Calibrator

1-9

“What Is Lidar Camera Calibration?”
“Calibration Guidelines and Procedure”

Introduced in R2021a

1 Apps

1-10

Objects

2

eigenFeature
Object for storing eigenvalue-based features

Description
The eigenFeature object stores an eigenvalue-based feature vector extracted from point cloud
data.

Creation
Syntax
features = eigenFeature(featureVector,centroid)

Description

features = eigenFeature(featureVector,centroid) constructs an eigenFeature object
from the feature vector featureVector and the centroid centroid. The featureVector
argument sets the Feature property, and the centroid argument sets the Centroid property.

Properties
Feature — Feature vector
seven-element vector

Feature vector, specified as a seven-element vector of the form [linearity planarity
scattering,omnivariance anisotropy eigenentropy change in curvature].

Centroid — Centroid
three-element vector

Centroid, specified as a three-element vector in the form [x y z].

Examples

Create eigenFeature Object

Create a feature vector and set the centroid for the eigenFeature object.

featureVector = rand(1,7);
centroid = rand(1,3);

Create an eigenFeature object.

eFeature = eigenFeature(featureVector,centroid)

eFeature =
 eigenFeature with properties:

2 Objects

2-2

 Feature: [0.8147 0.9058 0.1270 0.9134 0.6324 0.0975 0.2785]
 Centroid: [0.5469 0.9575 0.9649]

See Also
Functions
extractEigenFeatures

Objects
pcmapsegmatch | pointCloud

Topics
“Build Map and Localize Using Segment Matching”
“Point Cloud SLAM Overview”

Introduced in R2021a

 eigenFeature

2-3

pcmapsegmatch
Map of segments and features for localization and loop closure detection

Description
The pcmapsegmatch object creates a map of segments and features, and uses the segment matching
(SegMatch [1]) algorithm for place recognition. This segment matching approach is robust to
dynamic obstacles and reliable on large scale environments. The object stores the features, and
segments, and their corresponding view IDs. Use the view IDs to link the features to a view in the
point cloud view set object, pcviewset, for map building.

Creation

Syntax
sMap = pcmapsegmatch
sMap = pcmapsegmatch('CentroidDistance',dist)

Description

sMap = pcmapsegmatch returns a default pcmapsegmatch object. Use the addView object
function to add views and their corresponding segments and features to the map.

sMap = pcmapsegmatch('CentroidDistance',dist) additionally specifies the minimum
distance between segment centroids when adding segments and their corresponding features to the
map. Segments with centroids closer than the specified distance dist, are not added to the map.
dist is specified as a positive scalar with a default value of 0.1.

Properties
ViewIds — View identifier
M-element vector

This property is read-only.

View identifier, specified as an M-element vector of integers, where M is the number of views added
to pcmapsegmatch.

Features — Feature vector
N-element vector of eigenFeature objects

This property is read-only.

Feature vector, specified as an N-element vector of eigenFeature objects, where N is the number of
features.

2 Objects

2-4

Use the addView object function to add features for unique segments to the map. When you update
the map using the updateMap object function, features that correspond to duplicate segments are
removed from the map if they are within the CentroidDistance.

Segments — Point cloud segments
N-element vector of pointCloud objects

This property is read-only.

Point cloud segments, specified as an N-element vector of pointCloud objects, where N is the
number of point cloud segments.

A segment is a group of 3-D points that are close together and represent a partial or full object.

SelectedSubmap — Currently selected submap
entire map (default) | 6-element vector

This property is read-only.

Currently selected submap, specified as a 6-element vector of the form [xmin,xmax ymin ymax zmin
zmax] that describes the range of the submap along each axis. The elements of the vector describe
the region of interest represented by the submap.

XLimits — Range of map along x-axis
2-element vector

This property is read-only.

Range of the map along the x-axis, specified as a 2-element vector of the form [xmin xmax] .

YLimits — Range of map along the Y-axis
2-element vector

This property is read-only.

Range of the map along the Y-axis, specified as a 2-element vector of the form [ymin ymax] .

ZLimits — Range of map along the z-axis
2-element vector

This property is read-only.

Range of the map along the z-axis, specified as a 2-element vector of the form [zmin zmax] .

CentroidDistance — Minimum distance between segment centroids
positive scalar

This property is read-only.

Minimum distance between segment centroids, specified as a positive scalar. The object uses the
minimum distance when adding segments and corresponding features to the map as unique segments
and features.

 pcmapsegmatch

2-5

Object Functions
addView Add view to map
deleteView Delete view from map
findView Retrieve feature and segment indices corresponding to map view
hasView Check if view is in the map
deleteSegments Delete all segments in map
findPose Find absolute pose in map that aligns segment matches
updateMap Update centroid and point cloud segment locations in map
selectSubmap Select submap within map
isInsideSubmap Check if query position is inside selected submap
show Visualize the point cloud segments in the map

Examples

Lidar Localization Using Segment Matching

Load a map of segments and features from a MAT file. The point cloud data in the map has been
collected using the Simulation 3D Lidar (UAV Toolbox) block.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Load point cloud scans from a MAT file.

data = load('fullParkingLotData.mat');
ptCloudScans = data.fullParkingLotData;

Display the map of segments.

ax = show(sMap);

Change the viewing angle to top-view.

view(2)
pause(0.2)

Set the radius for selecting a cylindrical neighborhood.

outerCylinderRadius = 20;
innerCylinderRadius = 3;

Set the threshold parameters for segmentation.

distThreshold = 0.5;
angleThreshold = 180;

Set the size and submap threshold parameters for the selected submap

sz = [65 30 20];
submapThreshold = 10;

Set the radius parameter for visualization.

radius = 0.5;

Segment each point cloud and localize by finding segment matches.

2 Objects

2-6

for n = 1:numel(ptCloudScans)
 ptCloud = ptCloudScans(n);

 % Segment and remove the ground plane.
 groundPtsIdx = segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',11);
 ptCloud = select(ptCloud,~groundPtsIdx,'OutputSize','full');

 % Select the cylindrical neighborhood.
 dists = sqrt(ptCloud.Location(:,:,1).^2 + ptCloud.Location(:,:,2).^2);
 cylinderIdx = dists <= outerCylinderRadius & dists > innerCylinderRadius;
 ptCloud = select(ptCloud,cylinderIdx,'OutputSize','full');

 % Segment the point cloud.
 labels = segmentLidarData(ptCloud,distThreshold,angleThreshold,'NumClusterPoints',[50 5000]);

 % Extract features from the point cloud.
 [features,segments] = extractEigenFeatures(ptCloud,labels);

 % Localize by finding the absolute pose in the map that aligns the segment matches.
 [absPoseMap,~,inlierFeatures,inlierSegments] = findPose(sMap,features,segments);

 if isempty(absPoseMap)
 continue;
 end

 % Display the position estimate in the map.
 poseTranslation = absPoseMap.Translation;
 pos = [poseTranslation(1:2) radius];
 showShape('circle',pos,'Color','r','Parent',ax);
 pause(0.2)

 % Determine if the selected submap needs to be updated.
 [isInside,distToEdge] = isInsideSubmap(sMap,poseTranslation);
 needSelectSubmap = ~isInside ... % Current pose is outside submap
 || any(distToEdge(1:2) < submapThreshold) ... % Current pose is close to submap edge
 || n == 1; % 1st time localizing using whole map

 % Select a new submap.
 if needSelectSubmap
 sMap = selectSubmap(sMap,poseTranslation,sz);
 end
 end

 pcmapsegmatch

2-7

% Visualize the last segment matches.
figure;
pcshowMatchedFeatures(inlierSegments(:,1),inlierSegments(:,2),inlierFeatures(:,1),inlierFeatures(:,2))

2 Objects

2-8

References
[1] Dube, Renaud, Daniel Dugas, Elena Stumm, Juan Nieto, Roland Siegwart, and Cesar Cadena.

“SegMatch: Segment Based Place Recognition in 3D Point Clouds.” In 2017 IEEE
International Conference on Robotics and Automation (ICRA), 5266–72. Singapore,
Singapore: IEEE, 2017. https://doi.org/10.1109/ICRA.2017.7989618.

See Also
Functions
extractEigenFeatures | pcsegdist | pcshowMatchedFeatures |
segmentGroundFromLidarData | segmentLidarData

Objects
pcmapndt | pcviewset

Topics
“Build Map and Localize Using Segment Matching”

Introduced in R2021a

 pcmapsegmatch

2-9

addView
Add view to map

Syntax
sMapOut = addView(sMapIn,viewId,features)
sMapOut = addView(sMapIn,viewId,features,segments)

Description
sMapOut = addView(sMapIn,viewId,features) adds a view, viewId, that contains the
specified features features to the map sMapIn.

sMapOut = addView(sMapIn,viewId,features,segments) adds the segments segments that
correspond to each feature.

Examples

Add Features and Segments to a Map

Create a map representation to hold point cloud segments and features.

sMap = pcmapsegmatch('CentroidDistance',1);

Load point cloud scans.

data = load('fullParkingLotData.mat');
ptCloudScans = data.fullParkingLotData;

Set the radius to select a cylindrical neighborhood.

outerCylinderRadius = 30;
innerCylinderRadius = 3;

Set the threshold parameters for segmentation.

distThreshold = 0.5;
angleThreshold = 180;

Segment each point cloud and add the features and point cloud segments to the map.

for n = 1:numel(ptCloudScans);
 ptCloud = ptCloudScans(n);

 % Segment and remove the ground plane.
 groundPtsIdx = segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',11);
 ptCloud = select(ptCloud,~groundPtsIdx,'OutputSize','full');

 % Select cylindrical neighborhood.
 dists = sqrt(ptCloud.Location(:,:,1).^2 + ptCloud.Location(:,:,2).^2);
 cylinderIdx = dists <= outerCylinderRadius ...

2 Objects

2-10

 & dists > innerCylinderRadius;
 ptCloud = select(ptCloud,cylinderIdx,'OutputSize','full');

 % Segment the point cloud.
 [labels, numClusters] = segmentLidarData(ptCloud,distThreshold,angleThreshold,'NumClusterPoints',[50 5000]);

 % Extract features from the point cloud.
 [features,segments] = extractEigenFeatures(ptCloud,labels);

 % Add the features and segments to the map.
 sMap = addView(sMap,n,features,segments);
end

Display the map of segments.

figure; show(sMap);

Input Arguments
sMapIn — Original map of segments and features
pcmapsegmatch object

Original map of segments and features, specified as a pcmapsegmatch object.

viewId — View identifier
positive integer

 addView

2-11

View identifier, specified as an integer. Each view identifiers is unique to a specific view.

features — Eigenvalue-based features
vector of eigenFeature objects

Eigenvalue-based features, specified as a vector of eigenFeature objects. The function filters out
features that already exist in the map are filtered out as duplicates based on their centroid location
and the distance specified by the CentroidDistance property of the map.

You should extract new features from only a point cloud registered to the point clouds of existing
features

segments — Point cloud segments
vector of pointCloud objects

Point cloud segments, specified as a vector of pointCloud objects. To use the show object function
for visualization, you must specify this argument.

For improved performance, do not include segments in the map with findPose and updateMap
object functions. Alternatively, you can use the deleteSegment object function to remove the
existing segments before using findPose or updateMap.

Output Arguments
sMapOut — Updated map of segments and features
pcmapsegmatch object

Updated map of segments and features, returned as a pcmapsegmatch object.

See Also
Functions
findPose | findView

Objects
eigenFeature | pcmapsegmatch

Introduced in R2021a

2 Objects

2-12

deleteSegments
Delete all segments in map

Syntax
sMapOut = deleteSegments(sMapIn)

Description
sMapOut = deleteSegments(sMapIn) deletes all segments in the map sMapIn. Removing the
segments from the map improves the performance of the findPose and updateMap object functions.

Examples

Delete Segments Segment Map

Load a map of segments and features from a MAT file.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Remove the segments from the map, leaving only the corresponding features in the map.

sMapNoSegments = deleteSegments(sMap);

Verify the number of segments in the map before and after removal.

numBefore = numel(sMap.Segments);
numAfter = numel(sMapNoSegments.Segments);
disp("Number of Segments Before Deleting Segments: " + num2str(numBefore))

Number of Segments Before Deleting Segments: 464

disp("Number of Segments After Deleting Segments: " + num2str(numAfter))

Number of Segments After Deleting Segments: 0

Input Arguments
sMapIn — Original map of segments and features
pcmapsegmatch object

Original map of segments and features, specified as a pcmapsegmatch object.

Output Arguments
sMapOut — Updated map of segments and features
pcmapsegmatch object

 deleteSegments

2-13

Updated map of segments and features, returned as a pcmapsegmatch object.

See Also
Objects
pcmapsegmatch

Functions
findPose | updateMap

Introduced in R2021a

2 Objects

2-14

deleteView
Delete view from map

Syntax
sMapOut = deleteView(sMapIn,viewIds)

Description
sMapOut = deleteView(sMapIn,viewIds) deletes the specified views viewIds, along with their
corresponding features and segments.

Examples

Delete Views from Map

Load a map of segments and features from a MAT file.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Visualize the map.

figure
show(sMap)
title('Map Before Deleting Views')

 deleteView

2-15

Delete the first 50 views from the map.

viewIds = 1:50;
sMap = deleteView(sMap,viewIds);

Visualize the map after deleting the views.

figure
show(sMap)
title('Map After Deleting the First 50 Views')

2 Objects

2-16

Input Arguments
sMapIn — Original map of segments and features
pcmapsegmatch object

Original map of segments and features, specified as a pcmapsegmatch object.

viewIds — View identifiers
M-element vector

View identifiers, specified as an M-element vector. M is the number of views to delete. Each view
identifier is unique to a specific view.

Output Arguments
sMapOut — Updated map of segments and features
pcmapsegmatch object

Updated map of segments and features, returned as a pcmapsegmatch object.

See Also
Functions
addView | deleteSegments

 deleteView

2-17

Objects
pcmapsegmatch

Introduced in R2021a

2 Objects

2-18

findPose
Find absolute pose in map that aligns segment matches

Syntax
absPoseMap = findPose(sMap,refPose)
[absPoseMap,matchViewId] = findPose(sMap,refPose)

absPoseMap = findPose(sMap,currentFeatures)
absPoseMap = findPose(sMap,currentFeatures,currentSegments)

[___ ,inlierFeatures,inlierSegments] = findPose(___)

[___] = findPose(___ ,Name,Value)

Description
Map Building

absPoseMap = findPose(sMap,refPose) finds the absolute pose of the last added view that
aligns the segment matches of the detected loop closure. The function looks for segment matches
between the last added view and the segment features inside the submap specified by the
SelectedSubmap property of sMap.

[absPoseMap,matchViewId] = findPose(sMap,refPose) returns the view identifier for the
view that contains the most inliers. Use matchViewId to add the loop closure as a connection in a
pcviewset, using the addConnection object function. Correct for accumulated drift using
optimizePoses.
Localization

absPoseMap = findPose(sMap,currentFeatures) finds the absolute pose that aligns the
segments that correspond to the current features currentFeatures to the segments in the submap
specified by the SelectedSubmap property of sMap.

absPoseMap = findPose(sMap,currentFeatures,currentSegments) specifies the segments
currentSegments that correspond to the current features currentFeatures.
Visualization

[___ ,inlierFeatures,inlierSegments] = findPose(___) returns the inlier features
inlierFeatures and inlier segments inlierSegments in addition to any combination of
arguments from previous syntaxes.
Optional Name-Value Arguments

[___] = findPose(___ ,Name,Value) specifies options using one or more name-value
arguments in addition to the input arguments in previous syntaxes. For example,
'MaxThreshold',1.5 sets the matching threshold to 1.5 percent.

Examples

 findPose

2-19

Lidar Localization Using Segment Matching

Load a map of segments and features from a MAT file. The point cloud data in the map has been
collected using the Simulation 3D Lidar (UAV Toolbox) block.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Load point cloud scans from a MAT file.

data = load('fullParkingLotData.mat');
ptCloudScans = data.fullParkingLotData;

Display the map of segments.

ax = show(sMap);

Change the viewing angle to top-view.

view(2)
pause(0.2)

Set the radius for selecting a cylindrical neighborhood.

outerCylinderRadius = 20;
innerCylinderRadius = 3;

Set the threshold parameters for segmentation.

distThreshold = 0.5;
angleThreshold = 180;

Set the size and submap threshold parameters for the selected submap

sz = [65 30 20];
submapThreshold = 10;

Set the radius parameter for visualization.

radius = 0.5;

Segment each point cloud and localize by finding segment matches.

for n = 1:numel(ptCloudScans)
 ptCloud = ptCloudScans(n);

 % Segment and remove the ground plane.
 groundPtsIdx = segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',11);
 ptCloud = select(ptCloud,~groundPtsIdx,'OutputSize','full');

 % Select the cylindrical neighborhood.
 dists = sqrt(ptCloud.Location(:,:,1).^2 + ptCloud.Location(:,:,2).^2);
 cylinderIdx = dists <= outerCylinderRadius & dists > innerCylinderRadius;
 ptCloud = select(ptCloud,cylinderIdx,'OutputSize','full');

 % Segment the point cloud.
 labels = segmentLidarData(ptCloud,distThreshold,angleThreshold,'NumClusterPoints',[50 5000]);

 % Extract features from the point cloud.

2 Objects

2-20

 [features,segments] = extractEigenFeatures(ptCloud,labels);

 % Localize by finding the absolute pose in the map that aligns the segment matches.
 [absPoseMap,~,inlierFeatures,inlierSegments] = findPose(sMap,features,segments);

 if isempty(absPoseMap)
 continue;
 end

 % Display the position estimate in the map.
 poseTranslation = absPoseMap.Translation;
 pos = [poseTranslation(1:2) radius];
 showShape('circle',pos,'Color','r','Parent',ax);
 pause(0.2)

 % Determine if the selected submap needs to be updated.
 [isInside,distToEdge] = isInsideSubmap(sMap,poseTranslation);
 needSelectSubmap = ~isInside ... % Current pose is outside submap
 || any(distToEdge(1:2) < submapThreshold) ... % Current pose is close to submap edge
 || n == 1; % 1st time localizing using whole map

 % Select a new submap.
 if needSelectSubmap
 sMap = selectSubmap(sMap,poseTranslation,sz);
 end
 end

 findPose

2-21

% Visualize the last segment matches.
figure;
pcshowMatchedFeatures(inlierSegments(:,1),inlierSegments(:,2),inlierFeatures(:,1),inlierFeatures(:,2))

Input Arguments
sMap — Map of segments and features
pcmapsegmatch object

Map of segments and features, specified as a pcmapsegmatch object.

refPose — Reference pose of last added view
rigid3d object

Reference pose of the last added view, specified as a rigid3d object. The reference pose is the
estimated absolute pose used to transform the point cloud from the sensor frame to the world frame
for feature extraction.

currentFeatures — Current features
M-element vector of eigenFeature objects

Current features, specified as an M-element vector of eigenFeature objects.

currentSegments — Current segments
M-element vector of pointCloud objects

2 Objects

2-22

Current segments, specified as an M-element vector of pointCloud objects.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MatchThreshold',1.5 sets the matching threshold to 1.5 percent.

MatchThreshold — Matching threshold
1.5 (default) | scalar in range (0, 100]

Matching threshold, specified as a scalar in the range (0, 100]. The threshold is the maximum
percentage of the distance from a perfect match. The function classifies segments are classified as
possible matches if the distance between their feature vectors is lower than the threshold.

MinNumInliers — Minimum number of inliers
4 (default) | scalar

Minimum number of inliers, specified as a scalar greater than or equal to 3. Decreasing this value can
result in false positives. If the number of detected inliers is less than 'MinNumInliers', the function
returns an empty output for absPoseMap .

NumExcludedViews — Number of most recently added views to exclude
auto (default) | integer

Number of most recently added views to exclude, specified as an integer. For loop closure detection,
exclude the most recently added views to avoid matches against the most recent features. Specify a
larger value for this argument if many consecutive views correspond to the same area, such as scans
from a slow-moving vehicle.

The function uses a default value of 10 for map building and 0 for localization.

MaxDistance — Maximum distance for inlier centroid match
1 (default) | positive numeric scalar

Maximum distance for inlier centroid match, specified as a positive numeric scalar. This value is the
maximum distance that a centroid can differ from the projected location of its centroid match to be
considered an inlier in the geometric verification step.

NumNearestNeighbor — Number of closest features selected as feature match candidates
100 (default) | positive integer

Number of closest features selected as feature match candidates, specified as a positive integer. For
each feature in the last added view, or in the current features currentFeatures, the function
selects the closest 'NumNearestNeighbor' features as candidate feature matches. Specify a larger
value for this argument for maps with numerous similar features.

NumSelectedClusters — Number of feature clusters to check for matches
Inf (default) | positive integer

Number of feature clusters to check for matches, specified as a positive integer. The function clusters
candidate features based on their centroid locations. If you specify refPose, then the findPose
function selects the clusters closest to the centroids of the last added view currentFeatures.

 findPose

2-23

Decrease this value to improve performance at the expense of increasing the likelihood of false
negatives.

Output Arguments
absPoseMap — Absolute pose in the map
rigid3d object

Absolute pose in the map, returned as a rigid3d object. This object specifies the absolute pose that
aligns the segment matches.

matchViewId — View identifier containing most inlier matches
integer

View identifier containing the most inlier matches, returned as an integer. The inliers used to
compute the absolute pose map can come from several views.

inlierFeatures — Inlier features
N-by-2 matrix of eigenFeature objects

Inlier features, returned as an N-by-2 matrix of eigenFeature objects. The first column corresponds
to the inliers in the map, and the second column corresponds to the inliers in the last added view or
the current features input.

inlierSegments — Inlier segments
N-by-2 matrix of pointCloud objects

Inlier segments, returned as an N-by-2 matrix of pointCloud objects. The first column corresponds
to the inliers in the map, and the second column corresponds to the inliers in the last added view or
the current segments input.

Tips
• Removing the segments from the map using deleteSegments, before using the findPose

function, can improve performance.

Algorithms
findPose finds the absolute pose of a segmented point cloud using the SegMatch [1 on page 2-25]
algorithm for place recognition. The function finds the matches between the segments of interest and
the segments in the map, and returns the absolute pose that aligns the segment matches in the map.

• Map Building: Loop Closure Detection — Loop closure starts with finding the absolute pose by
finding the segment matches between the last added view and the segment features in the
selected submap, which is specified by the SelectedSubmap property of the map.

The last added view corresponds to a loop closure when the findPose function can estimate a
valid geometric transformation. If the function cannot estimate this transformation, then the
function returns an empty value for absPoseMap.

• Map Building: Correct Drift — To correct for drift, add the view that contains the most inliers
for loop closure as a connection to the point cloud view set pcviewset object as a connection
using the addConnection object function. Use the optimizePoses function to correct for
accumulated drift.

2 Objects

2-24

• Localization — To find the absolute pose of the point cloud in the map, the function looks for
segment matches between the current features currentFeatures and the submap specified by
the SelectedSubmap property of sMap. If it cannot estimate a valid geometric transformation
cannot be estimated, the function returns an empty value for the absPoseMap output argument.

• Visualization — Use the inlierFeatures and inlierSegments output arguments with the
pcshowMatchedFeatures function to visualize the segment matches between the features and
segments included in the map.

References
[1] Dube, Renaud, Daniel Dugas, Elena Stumm, Juan Nieto, Roland Siegwart, and Cesar Cadena.

“SegMatch: Segment Based Place Recognition in 3D Point Clouds.” In 2017 IEEE
International Conference on Robotics and Automation (ICRA), 5266–72. Singapore,
Singapore: IEEE, 2017. https://doi.org/10.1109/ICRA.2017.7989618.

See Also
Objects
eigenFeature | pcmapsegmatch | pcviewset | pointCloud | rigid3d

Functions
estimateGeometricTransform3D | extractEigenFeatures | pcsegdist |
pcshowMatchedFeatures | segmentLidarData | updateMap

Topics
“Build Map and Localize Using Segment Matching”

Introduced in R2021a

 findPose

2-25

findView
Retrieve feature and segment indices corresponding to map view

Syntax
idx = findView(sMap,viewIds)

Description
idx = findView(sMap,viewIds) retrieves the indices of the features and segments that
correspond to the specified views viewIds.

Examples

Select Segments from Specific Views

Load a map of segments and features into the workspace.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Retrieve the feature and segment indices corresponding to specific views.

viewIds = 20:25;
idx = findView(sMap,viewIds);

Select the segments that correspond to these views.

segments = sMap.Segments(idx);

Visualize the segments.

ptCloud = pccat(segments);
figure
pcshow(ptCloud)

2 Objects

2-26

Input Arguments
sMap — Map of segments and features
pcmapsegmatch object

Map of segments and features, specified as a pcmapsegmatch object.

viewIds — View identifiers
M-element vector

View identifiers, specified as an M-element vector. M is the number of views to delete. Each view
identifier is unique to a specific view.

Output Arguments
idx — Indices of features and segments in specified views
N-element vector

Indices of the index to features and segments in the specified views, returned as an N-element vector.
N is the total number of features and segments in the map. If an element of idx is 1 (true), then the
corresponding feature belongs to a specified view.

 findView

2-27

See Also
Functions
addView | hasView

Objects
pcmapsegmatch

Introduced in R2021a

2 Objects

2-28

hasView
Check if view is in the map

Syntax
tf = hasView(sMap,viewIds)

Description
tf = hasView(sMap,viewIds) checks if the views specified by viewIds are in the map.

Examples

Check if Views Exist

Load a map of segments and features from a MAT file.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Specify a set of indices for views.

viewIds = [10,500,2,100];

Check if the specified indices correspond to existing view identifiers.

tf = hasView(sMap,viewIds)

tf = 1x4 logical array

 1 0 1 0

Input Arguments
sMap — Map of segments and features
pcmapsegmatch object

Map of segments and features, specified as a pcmapsegmatch object.

viewIds — View identifiers
M-element vector

View identifiers, specified as an M-element vector of integers. M is the number of views to delete.
Each view identifier is unique to a specific view.

 hasView

2-29

Output Arguments
tf — Views that exist in map
M-element vector

Views that exist in map, returned as an M-element vector. The function returns a value of 1 (true) if
the view specified in the corresponding element of view Ids is in the map. The function returns 0
(false) if the view is not in the map.

See Also
Objects
pcmapsegmatch

Functions
deleteView

Introduced in R2021a

2 Objects

2-30

isInsideSubmap
Check if query position is inside selected submap

Syntax
isInside = isInsideSubmap(sMap,pos)
[isInside,distToEdge] = isInsideSubmap(sMap,pos)

Description
isInside = isInsideSubmap(sMap,pos) check if the query position pos, is inside the selected
submap of the map sMap.

[isInside,distToEdge] = isInsideSubmap(sMap,pos) also returns the distance from the
query position to the closest edge of the submap along the X-,Y-, and Z-axes respectively.

Examples

Check If Positions Are in Selected Submap

Load a map of segments and features from a MAT file.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Select a submap within the map.

center = [0 30 0];
sz = [40 24 10];
sMap = selectSubmap(sMap,center,sz);

Check three positions to see if they are inside the submap.

pos1 = [0 30 0]; % center
[isInside1,distToEdge1] = isInsideSubmap(sMap,pos1)

isInside1 = logical
 1

distToEdge1 = 1x3 single row vector

 20.0000 12.0000 0.0649

pos2 = [60 0 0]; % completely outside
[isInside2,distToEdge2] = isInsideSubmap(sMap,pos2)

isInside2 = logical
 0

 isInsideSubmap

2-31

distToEdge2 = 1x3 single row vector

 40.0000 18.0000 0.0649

pos3 = [15 30 0]; % inside, 5 meters from edge in x direction
[isInside3,distToEdge3] = isInsideSubmap(sMap,pos3)

isInside3 = logical
 1

distToEdge3 = 1x3 single row vector

 5.0000 12.0000 0.0649

Input Arguments
sMap — Map of segments and features
pcmapsegmatch object

Map of segments and features, specified as a pcmapsegmatch object.

pos — Query position
3-element vector

Query position, specified as a 3-element vector of the form [x y z].

Output Arguments
isInside — Indication of position inside submap
true | false

Indication of position inside submap, returned as a logical true or false.

distToEdge — Distance from the query position to closest edge of the submap
3-element vector

Distance from the query position to the closest edge of the submap in the X-, Y-, and Z-axes
respectively, returned as a 3-element vector.

See Also
Objects
pcmapsegmatch

Functions
findPose | selectSubmap

Introduced in R2021a

2 Objects

2-32

selectSubmap
Select submap within map

Syntax
sMapOut = selectSubmap(sMapIn,roi)
sMapOut = selectSubmap(sMapIn,center,sz)

Description
sMapOut = selectSubmap(sMapIn,roi) selects a submap within the sMapIn using the specified
region of interest roi.

Use this function to confine the search space for localization using coarse position estimates.

sMapOut = selectSubmap(sMapIn,center,sz) selects the submap specified by the center and
size sz of the submap.

Examples

Select and Visualize Submap

Load a segment map from a MAT file.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Visualize the currently selected submap.

figure
show(sMap,'submap')
title('Initial Selected Submap')

 selectSubmap

2-33

Select a new submap within the map.

center = [0 30 0];
sz = [40 25 10];
sMap = selectSubmap(sMap,center,sz);

Visualize the selected submap.

figure
show(sMap,'submap')
title('New Selected Submap')

2 Objects

2-34

Input Arguments
sMapIn — Original map of segments and features
pcmapsegmatch object

Original map of segments and features, specified as a pcmapsegmatch object.

roi — Region of interest
6-element vector

Region of interest, specified as a 6-element vector of the form [xmin xmax ymin ymax zmin zmax] .

center — Center of submap
3-element vector

Center of the submap, specified as 3-element vector of the form [xc yc zc].

sz — Size of submap along each axis
3-element vector

Size of the submap along each axis, specified as 3-element vector of the form [xsz ysz zsz].

 selectSubmap

2-35

Output Arguments
sMapOut — Updated map of segments and features
pcmapsegmatch object

Updated map of segments and features, returned as a pcmapsegmatch object with the updated
SelectedSubmap property.

Tips
• Use a submap size large enough to include the uncertainty of the position estimates and the range

of the sensor used withe findPose.A larger submap can increase computation time during each
call to the findPose function, but it can reduce the frequency of submap updates.

See Also
Objects
pcmapsegmatch

Functions
findPose | isInsideSubmap

Introduced in R2021a

2 Objects

2-36

show
Visualize the point cloud segments in the map

Syntax
show(sMap)
show(sMap,spatialExtent)

show(___ ,Name,Value)

ax = show(___)

Description
show(sMap) displays the point cloud segments in the map.

show(sMap,spatialExtent) displays point cloud segments within the spatial map or submap
specified by spatialExtent.

show(___ ,Name,Value) specifies options using one or more name-value arguments in addition to
any combination of input arguments in previous syntaxes. For example, 'MarkerSize',6 sets the
marker size to 6 points.

ax = show(___) returns the axes used to plot the point cloud segments specified with previous
syntaxes.

Examples

Visualize Full Map and Selected Submap

Load a map of segments and features from a MAT file.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Select a submap within the map.

center = [0 30 0];
sz = [40 25 8];
sMap = selectSubmap(sMap,center,sz);

Visualize the full map.

figure
show(sMap)
title('Full Map')

Highlight the selected submap on the full map.

pos = [center sz zeros(1,3)];
showShape('cuboid',pos,'Color','y','Opacity',0.2);

 show

2-37

Visualize the selected submap.

figure
show(sMap,'submap')
title('Selected Submap')

2 Objects

2-38

Input Arguments
sMap — Map of segments and features
pcmapsegmatch object

Map of segments and features, specified as a pcmapsegmatch object.

spatialExtent — Spatial extent
'map' | 'submap'

Spatial extent, specified as 'map' or 'submap'. When you specify 'submap', only points within the
current submap are displayed.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MarkerSize',6 sets the marker size to 6 points.

MarkerSize — Diameter of marker
6 (default) | positive scalar

 show

2-39

Diameter of marker, specified as a positive scalar. This value specifies the approximate diameter of
the point marker. Units are in points. A marker size larger than six can reduce rendering
performance.

Parent — Axes on which to display visualization
Axes object

Axes on which to display the visualization, specified as an Axes object. To create an Axes object, use
the axes function. To display the visualization in a new figure, leave 'Parent' unspecified.

Output Arguments
ax — Plot axes
Axes object

Plot axes, returned as an axes graphics object.

See Also
Objects
pcmapsegmatch

Functions
pcshow | pcshowMatchedFeatures

Introduced in R2021a

2 Objects

2-40

updateMap
Update centroid and point cloud segment locations in map

Syntax
sMapOut = updateMap(sMapIn,tforms)

Description
sMapOut = updateMap(sMapIn,tforms) Updates the centroid and point cloud segment locations
by applying the specified transformation tforms.

Examples

Apply Translation and Rotation To Entire Map

Load a map of segments and features from a MAT file.

data = load('segmatchMapFullParkingLot.mat');
sMap = data.segmatchMapFullParkingLot;

Visualize the map.

figure
show(sMap)

Change the viewing angle to top-view.

view(2)
title('Initial Map')

 updateMap

2-41

Define the transformation.

theta = 45; % degrees
rot = [cosd(theta) sind(theta) 0; ...
 -sind(theta) cosd(theta) 0; ...
 0 0 1];
trans = [100 200 0];
tform = rigid3d(rot,trans);
numViews = numel(sMap.ViewIds);
tforms = repmat(tform,numViews,1);

Update the segments and features of each view with the defined transformation.

sMap = updateMap(sMap,tforms);

Visualize the transformed map.

figure
show(sMap)

Change the viewing angle to top-view.

view(2)
title('Transformed Map')

2 Objects

2-42

Input Arguments
sMapIn — Original map of segments and features
pcmapsegmatch object

Original map of segments and features, specified as a pcmapsegmatch object.

tforms — Transforms
M-element vector of rigid3d objects

Transforms, specified as an M-element vector of rigid3d objects. M is the number of views in the
map.

Output Arguments
sMapOut — Updated map of segments and features
pcmapsegmatch object

Updated map of segments and features, returned as a pcmapsegmatch object. After the function
updates the locations, it removes possible duplicates in the map based on the CentroidDistance
property of the map.

The function resets the selected submap, specified by the SelectedSubmap property of the
pcmapsegmatch object, to the extent of the map based on the centroid locations.

 updateMap

2-43

Tips
• To improve performance, remove all segments from the map using the deleteSegments function.

See Also
Functions
findPose

Objects
pcmapsegmatch | rigid3d

Introduced in R2021a

2 Objects

2-44

cuboidModel
Parametric cuboid model

Description
The cuboidModel object stores the parameters of a parametric cuboid model. After you create a
cuboidModel object, you can extract cuboid corner points, and points within the cuboid using the
object functions. Cuboid models are used to store the output of pcfitcuboid function. It is a shape
fitting function which fits a cuboid over a point cloud.

Creation

Syntax
model = cuboidModel(params)
model = pcfitcuboid(ptCloudIn)
model = pcfitcuboid(ptCloudIn,indices)

Description

model = cuboidModel(params) constructs a parametric cuboid model from the 1-by-9 input
vector, params.

model = pcfitcuboid(ptCloudIn) fits a cuboid over the input point cloud data. The
pcfitcuboid function stores the properties of the cuboid in a parametric cuboid model object,
model.

model = pcfitcuboid(ptCloudIn,indices) fits a cuboid over a selected set of points,
indices, in the input point cloud.

For more information on how to use this function, visit pcfitcuboid function reference page.

Properties
Parameters — Cuboid model parameters
nine-element row vector

This property is read-only.

Cuboid model parameters, stored as a nine-element row vector of the form [xctr yctr zctr xlen ylen zlen xrot
yrot zrot].

• xctr, yctr, and zctr specify the center of the cuboid.
• xlen, ylen, and zlen specify the length of the cuboid along the x-, y-, and z-axis, respectively, before

rotation has been applied.

 cuboidModel

2-45

• xrot, yrot, and zrot specify the rotation angles for the cuboid along the x-, y-, and z-axis, respectively.
These angles are clockwise-positive when looking in the forward direction of their corresponding
axes.

The figure shows how these values determine the position of a cuboid.

These parameters are specified by the params input argument.
Data Types: single | double

Center — Center of cuboid
three-element row vector

This property is read-only.

Center of the cuboid, stored as a three-element row vector of the form [xctr yctr zctr]. The vector
contains the 3-D coordinates of the cuboid center in the x-, y-, and z-axis, respectively.

This property is derived from the Parameters property.
Data Types: single | double

Dimensions — Dimensions of cuboid
three-element row vector

This property is read-only.

2 Objects

2-46

Dimensions of the cuboid, stored as a three-element row vector of the form [xlen ylen zlen]. The vector
contains the length of the cuboid along the x-, y-, and z-axis, respectively.

This property is derived from the Paramareters property.
Data Types: single | double

Orientation — Orientation of cuboid
three-element row vector

This property is read-only.

Orientation of the cuboid, stored as a three-element row vector of the form, [xrot yrot zrot], in degrees.
The vector contains the rotation of the cuboid along the x-, y-, and z-axis, respectively.

This property is derived from the Paramareters property.
Data Types: single | double

Object Functions
getCornerPoints Get corner points of cuboid model
findPointsInsideCuboid Find points enclosed by cuboid model
plot Plot cuboid model

Examples

Detect Cuboid in Point Cloud

Detect a cuboid in a point cloud using pcfitcuboid function. The function stores the cuboid
parameters as a cuboidModel object.

Read point cloud data into the workspace.

ptCloud = pcread('highwayScene.pcd');

Search the point cloud within a specified region of interest (ROI). Create a point cloud of only the
detected points.

roi = [-30 30 -20 30 -8 13];
in = findPointsInROI(ptCloud,roi);
ptCloudIn = select(ptCloud,in);

Plot the point cloud of detected points.

 figure
 pcshow(ptCloudIn.Location)
 xlabel('X(m)')
 ylabel('Y(m)')
 zlabel('Z(m)')
 title('Detected Points in ROI')

 cuboidModel

2-47

Find the indices of the points in a specified ROI within the point cloud.

roi = [9.6 13.8 7.9 9.3 -2.5 3];
sampleIndices = findPointsInROI(ptCloudIn,roi);

Fit a cuboid to the selected set of points in the point cloud.

 model = pcfitcuboid(ptCloudIn,sampleIndices);
 figure
 pcshow(ptCloudIn.Location)
 xlabel('X(m)')
 ylabel('Y(m)')
 zlabel('Z(m)')
 title('Detect a Cuboid in a Point Cloud')

Plot the cuboid box in the point cloud.

hold on
plot(model)

2 Objects

2-48

Display the internal properties of the cuboidModel object.

model

model =
 cuboidModel with properties:

 Parameters: [11.4873 8.5997 -1.6138 3.6713 1.3220 1.7576 0 0 0.9999]
 Center: [11.4873 8.5997 -1.6138]
 Dimensions: [3.6713 1.3220 1.7576]
 Orientation: [0 0 0.9999]

Fit Cuboid Over Point Cloud Data

Fit cuboid bounding boxes around clusters in a point cloud.

Load the point cloud data into the workspace.

data = load('drivingLidarPoints.mat');

Define and crop a region of interest (ROI) from the point cloud. Visualize the selected ROI of the point
cloud.

roi = [-40 40 -6 9 -2 1];
in = findPointsInROI(data.ptCloud,roi);

 cuboidModel

2-49

ptCloudIn = select(data.ptCloud,in);
hcluster = figure;
panel = uipanel('Parent',hcluster,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshow(ptCloudIn,'MarkerSize',30,'Parent',ax)
title('Input Point Cloud')

Segment the ground plane. Visualize the segmented ground plane.

maxDistance = 0.3;
referenceVector = [0 0 1];
[~,inliers,outliers] = pcfitplane(ptCloudIn,maxDistance,referenceVector);
ptCloudWithoutGround = select(ptCloudIn,outliers,'OutputSize','full');
hSegment = figure;
panel = uipanel('Parent',hSegment,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshowpair(ptCloudIn,ptCloudWithoutGround,'Parent',ax)
legend('Ground Region','Non-Ground Region','TextColor', [1 1 1])
title('Segmented Ground Plane')

2 Objects

2-50

Segment the non-ground region of the point cloud into clusters. Visualize the segmented point cloud.

distThreshold = 1;
[labels,numClusters] = pcsegdist(ptCloudWithoutGround,distThreshold);
labelColorIndex = labels;
hCuboid = figure;
panel = uipanel('Parent',hCuboid,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshow(ptCloudIn.Location,labelColorIndex,'Parent',ax)
title('Fitting Bounding Boxes')
hold on

Fit bounding box on each cluster, visualized as orange highlights.

for i = 1:numClusters
 idx = find(labels == i);
 model = pcfitcuboid(ptCloudWithoutGround,idx);
 plot(model)
end

 cuboidModel

2-51

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
findPointsInsideCuboid | getCornerPoints | pcfitcuboid | plot

Objects
cylinderModel | planeModel | pointCloud | sphereModel

Introduced in R2020b

2 Objects

2-52

findPointsInsideCuboid
Find points enclosed by cuboid model

Syntax
Indices = findPointsInsideCuboid(model,ptCloudIn)

Description
Indices = findPointsInsideCuboid(model,ptCloudIn) returns the linear indices of the
points enclosed by a cuboid model, model, in an input point cloud, ptCloudIn.

Examples

Extract Points Inside Cuboid Model

Extract points enclosed by a cuboid model in a point cloud. Create the cuboid model as a
cuboidModel object.

Read point cloud data into the workspace.

ptCloudIn = pcread('highwayScene.pcd');

Define a cuboid model as a cuboidModel object.

params = [11.4873085 8.59969 -1.613766 3.6712 1.3220...
 1.75755, 0, 0, 0.017451];
model = cuboidModel(params);

Find the points inside the cuboid.

indices = findPointsInsideCuboid(model,ptCloudIn);

Select the corresponding points in the input point cloud.

cubPtCloud = select(ptCloudIn,indices);

Plot the point cloud and the points enclosed by the cuboid.

pcshowpair(ptCloudIn,cubPtCloud)
xlim([-20 30])
ylim([-20 40])
legend("Input Point Cloud","Enclosed Points",'TextColor',[1 1 1])

 findPointsInsideCuboid

2-53

Input Arguments
model — Cuboid model
cuboidModel object

Cuboid model, specified as a cuboidModel object.

ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Output Arguments
Indices — Indices of enclosed points
N-element column vector

Indices of enclosed points, returned as an N-element column vector. N is the number of enclosed
points. Use the select function to select the corresponding points in the input point cloud
ptCloudIn.

2 Objects

2-54

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
getCornerPoints | pcfitcuboid | plot

Objects
cuboidModel

Introduced in R2020b

 findPointsInsideCuboid

2-55

getCornerPoints
Get corner points of cuboid model

Syntax
points = getCornerPoints(model)

Description
points = getCornerPoints(model) returns the corner points of a cuboid model as 3-D
coordinates.

Examples

Get Corner Points of Cuboid Model

Create a cuboid model object using the cuboidModel creation function, and get the corner points of
the cuboid model as 3-D coordinates.

Read point cloud data into the workspace.

ptCloudIn = pcread('highwayScene.pcd');

Define a cuboid model as a cuboidModel object.

params = [11.4873085 8.59969 -1.613766 3.6712 1.3220,...
 1.75755 0 0 0.017451];
model = cuboidModel(params);

Get the corner points of the cuboid model.

points = getCornerPoints(model)

points = 8×3

 13.3227 9.2612 -0.7350
 9.6515 9.2601 -0.7350
 9.6519 7.9381 -0.7350
 13.3231 7.9392 -0.7350
 13.3227 9.2612 -2.4925
 9.6515 9.2601 -2.4925
 9.6519 7.9381 -2.4925
 13.3231 7.9392 -2.4925

The columns represent the x, y, and z coordinates, respectively, of the eight corners of the cuboid
model. Each row represents a corner point.

2 Objects

2-56

Input Arguments
model — Cuboid model
cuboidModel object

Cuboid model, specified as a cuboidModel object.

Output Arguments
points — 3-D coordinates of corner points
8-by-3 matrix of real values

3-D coordinates of the corner points, returned as an 8-by-3 matrix of real values.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
findPointsInsideCuboid | pcfitcuboid | plot

Objects
cuboidModel

Introduced in R2020b

 getCornerPoints

2-57

plot
Plot cuboid model

Syntax
plot(model)
plot(model,'Parent',ax)
H = plot(___)

Description
plot(model) plots a cuboid model within the axes limits of the current figure.

plot(model,'Parent',ax) plots a cuboid model on a specified output axes.

H = plot(___) additionally returns the cuboid model plot (figure) as a patch object.

Examples

Detect Cuboid in Point Cloud

Detect a cuboid in a point cloud using pcfitcuboid function. The function stores the cuboid
parameters as a cuboidModel object.

Read point cloud data into the workspace.

ptCloud = pcread('highwayScene.pcd');

Search the point cloud within a specified region of interest (ROI). Create a point cloud of only the
detected points.

roi = [-30 30 -20 30 -8 13];
in = findPointsInROI(ptCloud,roi);
ptCloudIn = select(ptCloud,in);

Plot the point cloud of detected points.

 figure
 pcshow(ptCloudIn.Location)
 xlabel('X(m)')
 ylabel('Y(m)')
 zlabel('Z(m)')
 title('Detected Points in ROI')

2 Objects

2-58

Find the indices of the points in a specified ROI within the point cloud.

roi = [9.6 13.8 7.9 9.3 -2.5 3];
sampleIndices = findPointsInROI(ptCloudIn,roi);

Fit a cuboid to the selected set of points in the point cloud.

 model = pcfitcuboid(ptCloudIn,sampleIndices);
 figure
 pcshow(ptCloudIn.Location)
 xlabel('X(m)')
 ylabel('Y(m)')
 zlabel('Z(m)')
 title('Detect a Cuboid in a Point Cloud')

Plot the cuboid box in the point cloud.

hold on
plot(model)

 plot

2-59

Display the internal properties of the cuboidModel object.

model

model =
 cuboidModel with properties:

 Parameters: [11.4873 8.5997 -1.6138 3.6713 1.3220 1.7576 0 0 0.9999]
 Center: [11.4873 8.5997 -1.6138]
 Dimensions: [3.6713 1.3220 1.7576]
 Orientation: [0 0 0.9999]

Input Arguments
model — Cuboid model
cuboidModel object

Cuboid model, specified as a cuboidModel object.

ax — Output axes
gca (default) | Axes object

Output axes, specified as an Axes object, on which to display the cuboid model. For a list of
properties, see Axes Properties.

2 Objects

2-60

Output Arguments
H — Patch object
patch object

Patch object, returned as a patch object.

See Also
Functions
findPointsInsideCuboid | getCornerPoints | pcfitcuboid

Objects
cuboidModel

Introduced in R2020b

 plot

2-61

groundTruthLidar
Lidar ground truth label data

Description
The groundTruthLidar object contains information about lidar ground truth labels. The data source
used to create the object is a collection of lidar point cloud data. You can create, export, or import a
groundTruthLidar object from the Lidar Labeler app.

Creation
To export a groundTruthLidar object from the Lidar Labeler app, on the app toolstrip, select
Export > To Workspace. The app exports the object to the MATLAB workspace. To create a
groundTruthLidar object programmatically, use the groundTruthLidar function (described
here).

Syntax
gTruth = groundTruthLidar(dataSource,labelDefs,labelData)

Description

gTruth = groundTruthLidar(dataSource,labelDefs,labelData) returns an object
containing lidar ground truth labels that can be imported into the Lidar Labeler app.

• dataSource specifies the source of the lidar point cloud data and sets the DataSource property.
• labelDefs specifies the definitions of region of interest (ROI) and scene labels containing

information such as Name, Type, and Group, and sets the LabelDefinitions property.
• labelData specifies the identifying information, position, and timestamps for the marked ROI

labels and scene labels, and sets the LabelData property.

Properties
DataSource — Source of ground truth lidar data
PointCloudSequenceSource object | VelodyneLidarSource object | LasFileSequenceSource
object | RosbagSource object

Source of ground truth lidar data, specified as a PointCloudSequenceSource,
VelodyneLidarSource, LasFileSequenceSource, or RosbagSource object. This object contains
the information that describes the source from which the ground truth lidar data was labeled. This
table provides more details about the type of objects that you can specify.

Object Name Data Source Class Reference
PointCloudSequenceSource Point cloud sequence folder vision.labeler.loading.P

ointCloudSequenceSource

2 Objects

2-62

Object Name Data Source Class Reference
VelodyneLidarSource Velodyne® packet capture

(PCAP) file
vision.labeler.loading.V
elodyneLidarSource

LasFileSequenceSource LAS or LAZ file sequence folder lidar.labeler.loading.La
sFileSequenceSource

RosbagSource Rosbag file lidar.labeler.loading.Ro
sbagSource

LabelDefinitions — Label definitions
table

This property is read-only.

Label definitions, specified as a table. To create this table, use one of these options.

• In the Lidar Labeler app, create label definitions, and then export them as part of a
groundTruthLidar object.

• Use a labelDefinitionCreatorLidar object to generate a label definitions table. If you save
this table to a MAT-file, you can then load the label definitions into a Lidar Labeler app session by
selecting Open > Label Definitions from the app toolstrip.

• Create the label definitions table at the MATLAB command line.

This table describes the required and optional columns of the table specified in the
LabelDefinitions property.

Column Description Required or
Optional

Name Strings or character vectors specifying the name of each label
definition.

Required

Type labelType enumerations that specify the type of each label
definition.

• For ROI label definitions, the only valid labelType
enumeration is labelType.Cuboid.

• For scene label definitions, the only valid labelType
enumeration is labelType.Scene.

Required

 groundTruthLidar

2-63

Column Description Required or
Optional

LabelColor RGB triplets that specify the colors of the label definitions. Values
are in the range [0, 1]. The color yellow (RGB triplet [1 1 0]) is
reserved for the color of selected labels in the Lidar Labeler app.

Optional

When you
define labels in
the Lidar
Labeler app,
you must
specify a color.
Therefore, an
exported label
definitions
table always
includes this
column.

When you
create label
definitions
using the
labelDefini
tionCreator
Lidar object
without
specifying
colors, the
returned label
definition table
includes this
column, but all
column values
are empty.

2 Objects

2-64

Column Description Required or
Optional

Group Strings or character vectors specifying the group to which each
label definition belongs.

Optional

If you create
the label
definitions
table at the
MATLAB
command line,
you do not
need to
include a
Group column.

If you export
label
definitions
from the Lidar
Labeler app or
create them
using a
labelDefini
tionCreator
Lidar object,
the label
definitions
table includes
this column,
even if you did
not specify
groups. The
app assigns
each label
definition a
Group value of
'None'.

 groundTruthLidar

2-65

Column Description Required or
Optional

Description Strings or character vectors that describe each label definition. Optional

If you create
the label
definitions
table at the
MATLAB
command line,
you do not
need to
include a
Description
column.

If you export
label
definitions
from the Lidar
Labeler app or
create them
using a
labelDefini
tionCreator
Lidar object,
the label
definitions
table includes
this column,
even if you did
not specify
descriptions.
The
Description
for these label
definitions is
an empty
character
vector.

2 Objects

2-66

Column Description Required or
Optional

Hierarchy Structures containing attribute information for each label
definition.

Field Description
AttributeName1,...,Attri
buteNameN

Attribute information

Each defined attribute has its
own field, where the name of
the field corresponds to the
attribute name. The attribute
value is a structure containing
these fields:

• DefaultValue — Default
value of the attribute,
specified as a numeric scalar
for Numeric attributes, a
string for String attributes,
or a logical scalar or empty
array for Logical
attributes. List attributes
do not contain this field.

• ListItems — List items of
the attribute, specified as a
cell array of character
vectors. Only List attributes
contain this field.

• Description — Description
of the attribute, specified as
a character vector.

Type Type of parent label for the
attributes, specified as a string
or character vector.

Description Description of parent label for
the attributes, specified as a
string or character vector.

If a label definition does not contain attributes, then the table
entry for that label definition is empty.

Optional

When you
define
sublabels or
attributes in
the Lidar
Labeler app or
the
labelDefini
tionCreator
Multisignal
object, the
generated
label
definitions
table includes
this column.

LabelData — Label data for each ROI and scene label
timetable

This property is read-only.

Label data for each ROI and scene label, specified as a timetable. Each column of LabelData
holds labels for a single label definition and corresponds to the Name value for each row in
LabelDefinitions. The storage format for the label data depends on the label type.

 groundTruthLidar

2-67

Label Type Storage Format for Labels at Each
Timestamp

labelType.Cuboid M-by-9 numeric matrix with rows of the form
[xctr, yctr, zctr, xlen, ylen, zlen,
xrot, yrot, zrot], where:

• M is the number of labels in the frame.
• xctr, yctr, and zctr specify the center of

the cuboid.
• xlen, ylen, and zlen specify the length of

the cuboid along the x-axis, y-axis, and z-axis,
respectively, before rotation has been applied.

• xrot, yrot, and zrot specify the rotation
angles for the cuboid along the x-axis, y-axis,
and z-axis, respectively. These angles are
clockwise-positive when looking in the
forward direction of their corresponding axes.

The figure shows how these values determine the
position of a cuboid.

labelType.Scene Logical vector, where true indicates the
presence of the label at that timestamp.

If the Cuboid ROI label data includes attributes, then the labels at each timestamp must be specified
as structures instead. The structure includes these fields.

2 Objects

2-68

Label Structure Field Description
Position Positions of the parent labels at the given

timestamp

The format of Position for labels of type
Cuboid is described in the previous table.

AttributeName1,...,AttributeNameN Attributes of the parent labels

Each defined attribute has its own field, where
the name of the field corresponds to the attribute
name. The attribute value is a character vector
for a List or String attribute, a numeric scalar
for a Numeric attribute, or a logical scalar for a
Logical attribute. If the attribute is unspecified,
then the attribute value is an empty vector.

Object Functions
changeFilePaths Change file paths in ground truth data
selectLabels Select ground truth data by label name or type
selectLabelsByGroup Select ground truth data by label group name
selectLabelsByName Select ground truth data by label name
selectLabelsByType Select ground truth data by label type

Examples

Create Ground Truth Lidar Object

Create ground truth data for a Velodyne lidar source that captures a car on the road. Specify the
signal sources, label definitions, and ROI label data.

Create a Velodyne data source.
sourceName = fullfile(toolboxdir('vision'),'visiondata', ...
 'lidarData_ConstructionRoad.pcap');

sourceParams = struct();
sourceParams.DeviceModel = 'HDL32E';
sourceParams.CalibrationFile = fullfile(matlabroot,'toolbox','shared', ...
 'pointclouds','utilities','velodyneFileReaderConfiguration', ...
 'HDL32E.xml');

Load the data source.

dataSource = vision.labeler.loading.VelodyneLidarSource;
dataSource.loadSource(sourceName,sourceParams);

Create label definitions.

ldc = labelDefinitionCreatorLidar;
addLabel(ldc,'Car','Cuboid');
labelDefs = ldc.create;

Create ground truth data for lidar sequence.

 groundTruthLidar

2-69

numPCFrames = numel(dataSource.Timestamp{1});
carData = cell(numPCFrames,1);
carData{1} = [1.0223 13.2884 1.1456 8.3114 3.8382 3.1460 0 0 0];
lidarData = timetable(dataSource.Timestamp{1},carData, ...
 'VariableNames',{'Car'});

Create the ground truth lidar object.

gTruth = groundTruthLidar(dataSource,labelDefs,lidarData)

gTruth =

 groundTruthLidar with properties:

 DataSource: [1×1 vision.labeler.loading.VelodyneLidarSource]
 LabelDefinitions: [1×5 table]
 LabelData: [1238×1 timetable]

See Also
Objects
attributeType | labelDefinitionCreatorLidar | labelType

Introduced in R2020b

2 Objects

2-70

changeFilePaths
Change file paths in ground truth data

Syntax
unresolvedPaths = changeFilePaths(gTruth,alternativePaths)

Description
unresolvedPaths = changeFilePaths(gTruth,alternativePaths) changes the file paths in
a groundTruthLidar object gTruth based on the specified pairs of current paths and alternative
paths alternativePaths. If gTruth is a vector of groundTruthLidar objects, the function
changes the file paths across all objects. The function returns the unresolved paths in
unresolvedPaths. An unresolved path is any current path in alternativePaths not found in
gTruth or any alternative path in alternativePaths not found at the specified path location. In
both cases, unresolvedPaths returns only the current paths.

Examples

Change File Path in Ground Truth Lidar Object

Change the file paths to the data sources in a groundTruthLidar object.

Load a groundTruthLidar object containing multiple labels of groups, types and names into the
workspace. The data source contains the file paths corresponding to the point cloud sequence
showing multiple vehicles. MATLAB® displays a warning that the path to the data source cannot be
found.

load('groundTruthLidar.mat');

Warning: The data source for the following source names could not be loaded. C:\Source

Display the current path to the data source.

gTruth.DataSource

ans =
 PointCloudSequenceSource with properties:

 Name: "Point Cloud Sequence"
 Description: "A PointCloud sequence reader"
 SourceName: "C:\Source"
 SourceParams: [1×1 struct]
 SignalName: "Source"
 SignalType: PointCloud
 Timestamp: {[0 sec]}
 NumSignals: 1

 changeFilePaths

2-71

Specify the current path to the data source and an alternative path and store these paths in a cell
array. Use the changeFilePaths function to update the data source path based on the paths in the
cell array.

The function updates the paths for all labels. As the function resolves all paths, it returns an empty
array of unresolved paths.

currentPathDataSource = "C:\Source";
newPathDataSource = fullfile(matlabroot, 'toolbox', 'lidar', 'lidardata');
alternativeFilePaths = {[currentPathDataSource newPathDataSource]};
unresolvedPaths = changeFilePaths(gTruth, alternativeFilePaths)

unresolvedPaths =

 []

To view the new data source path, use the gTruth.DataSource command.

Input Arguments
gTruth — Ground truth lidar data
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth lidar data, specified as a groundTruthLidar object or vector of groundTruthLidar
objects.

alternativePaths — Alternative file paths
two-element row vector of strings | cell array of two-element row vector of strings

Alternative file paths, specified as a two-element row vector of strings or cell array of two-element
row vectors of strings, where each vector is of the form [pcurrent pnew].

• pcurrent is a current file path in gTruth. This file path can be from the data source or pixel label
data of the gTruth input. Specify pcurrent using backslashes as the path separators.

• pnew is the new path to which to change pcurrent. Specify pnew using either forward slashes or
backslashes as the path separators.

You can specify alternative paths to signal data sources. The DataSource property of gTruth
contains one groundTruthLidar object per signal. The changeFilePaths function updates the
signal paths stored in these objects.

If gTruth is a vector of groundTruthLidar objects, the function changes the file paths across all
objects.

Output Arguments
unresolvedPaths — Unresolved file paths
string array

Unresolved file paths, returned as a string array. If the changeFilePaths function cannot find
either the specified current path in the gTruth input or the specified new path in the specified path
location, then it returns the unresolved current path.

2 Objects

2-72

If the function finds and resolves all file paths, then it returns unresolvedPaths as an empty string
array.

See Also
groundTruthLidar

Introduced in R2020b

 changeFilePaths

2-73

selectLabels
Select ground truth data by label name or type

Syntax
gtLabel = selectLabels(gTruth,labels)

Description
gtLabel = selectLabels(gTruth,labels) selects ground truth data of the specified label
names or types labels from a groundTruthLidar object gTruth. The function returns a
corresponding groundTruthLidar object gtLabel that contains only the selected labels. If gTruth
is a vector of groundTruthLidar objects, then the function returns a vector of corresponding
groundTruthLidar objects that contain only the selected labels.

Examples

Select Ground Truth Lidar Labels by Label Name or Label Type

Load a groundTruthLidar object containing labels of various groups, types, and names into the
workspace.
lidarDir = fullfile(matlabroot,'toolbox','lidar','lidardata','lidarLabeler');
addpath(lidarDir)
load('lidarLabelerGTruth.mat')

Inspect the label definitions. The object contains label definitions of types Cuboid and Scene with
various label names.

lidarLabelerGTruth.LabelDefinitions

ans =

 5×5 table

 Name Type LabelColor Group Description
 ______________ ______ ____________ ___________ ___________

 {'car' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'bike' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'pole' } Cuboid {1×3 double} {'None' } {0×0 char}
 {'vegetation'} Cuboid {1×3 double} {'None' } {0×0 char}
 {'road' } Scene {1×3 double} {'None' } {0×0 char}

Create a new groundTruthLidar object that contains only the label definitions with the name
"car".

labelNames = "car";
gtLidarLabel = selectLabels(lidarLabelerGTruth,labelNames);

gtLidarLabel =

 groundTruthLidar with properties:

 DataSource: [1×1 vision.labeler.loading.PointCloudSequenceSource]

2 Objects

2-74

 LabelDefinitions: [1×5 table]
 LabelData: [1×1 timetable]

View the label definitions of the returned groundTruthLidar object.

gtLidarLabel.LabelDefinitions

ans =

 1×5 table

 Name Type LabelColor Group Description
 _______ ______ ____________ ___________ ___________

 {'car'} Cuboid {1×3 double} {'vehicle'} {0×0 char}

Create a new groundTruthLidar object that contains the label definitions from
lidarLabelerGTruth for only the labels of type Cuboid.

labelType = labelType.Cuboid;
gtLidarLabel = selectLabels(lidarLabelerGTruth,labelType)

gtLidarLabel =

 groundTruthLidar with properties:

 DataSource: [1×1 vision.labeler.loading.PointCloudSequenceSource]
 LabelDefinitions: [4×5 table]
 LabelData: [1×4 timetable]

View the label definitions of the returned groundTruthLidar object.

gtLidarLabel.LabelDefinitions

ans =

 4×5 table

 Name Type LabelColor Group Description
 ______________ ______ ____________ ___________ ___________

 {'car' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'bike' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'pole' } Cuboid {1×3 double} {'None' } {0×0 char}
 {'vegetation'} Cuboid {1×3 double} {'None' } {0×0 char}

Input Arguments
gTruth — Ground truth lidar data
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth lidar data, specified as a groundTruthLidar object or vector of groundTruthLidar
objects.

labels — Label names or types
one or more label names | one or more label types

Label names or types, specified as one or more label names or one or more label types. Specify one or
more label names as a character vector, string scalar, cell array of character vectors, or vector of
strings. Specify one or more label types as a labelType enumeration or vector of labelType
enumerations.

 selectLabels

2-75

To view all distinct label names in a groundTruthLidar object, enter the first of these commands at
the MATLAB command prompt. To view all distinct label types in a groundTruthLidar object, enter
the second.

unique(gTruth.LabelDefinitions.Name)
unique(gTruth.LabelDefinitions.Type)

Example: 'car'
Example: "car"
Example: {'car','lane'}
Example: ["car" "lane"]
Example: labelType.Cuboid
Example: [labelType.Cuboid labelType.Scene]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth with only the selected labels, returned as a groundTruthLidar object or vector of
groundTruthLidar objects.

Each groundTruthLidar object in the gtLabel output corresponds to a groundTruthLidar
object in the gTruth input. The returned objects contain only those labels from the input ground
truth objects that are of the label types or the label names specified in the labels input.

See Also
Objects
groundTruthLidar

Functions
selectLabelsByGroup | selectLabelsByType | selectLabelsByName

Introduced in R2020b

2 Objects

2-76

selectLabelsByGroup
Select ground truth data by label group name

Syntax
gtLabel = selectLabelsByGroup(gTruth,labelGroups)

Description
gtLabel = selectLabelsByGroup(gTruth,labelGroups) selects ground truth data with the
specified label group names labelGroups from a groundTruthLidar object gTruth. The function
returns a corresponding groundTruthLidar object gtLabel that contains only the selected labels.
If gTruth is a vector of groundTruthLidar objects, then the function returns a vector of
corresponding groundTruthLidar objects that contain only the selected labels.

Examples

Select Ground Truth Lidar Labels by Group Name

Load a groundTruthLidar object containing multiple labels of groups, types and names.
lidarDir = fullfile(matlabroot,'toolbox','lidar','lidardata','lidarLabeler');
addpath(lidarDir)
load('lidarLabelerGTruth.mat')

Inspect the label definitions. The object contains two label definitions in a 'vehicle' group.
Ungrouped labels are in the group named 'None'.

lidarLabelerGTruth.LabelDefinitions

ans =

 5×5 table

 Name Type LabelColor Group Description
 ______________ ______ ____________ ___________ ___________

 {'car' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'bike' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'pole' } Cuboid {1×3 double} {'None' } {0×0 char}
 {'vegetation'} Cuboid {1×3 double} {'None' } {0×0 char}
 {'road' } Scene {1×3 double} {'None' } {0×0 char}

Create a new groundTruthLidar object that contains only the label definitions in the group
'Vehicle' group.

groupNames = 'vehicle';
gtLidarLabel = selectLabelsByGroup(lidarLabelerGTruth,groupNames)

gtLidarLabel =

 groundTruthLidar with properties:

 DataSource: [1×1 vision.labeler.loading.PointCloudSequenceSource]
 LabelDefinitions: [2×5 table]
 LabelData: [1×2 timetable]

 selectLabelsByGroup

2-77

View the labels returned by the function.

gtLidarLabel.LabelDefinitions

ans =

 2×5 table

 Name Type LabelColor Group Description
 ________ ______ ____________ ___________ ___________

 {'car' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'bike'} Cuboid {1×3 double} {'vehicle'} {0×0 char}

Input Arguments
gTruth — Ground truth lidar data
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth lidar data, specified as a groundTruthLidar object or vector of groundTruthLidar
objects.

labelGroups — Label group names
character vector | string scalar | cell array of character vectors | vector of strings

Label group names, specified as a character vector, string scalar, cell array of character vectors, or
vector of strings.

To view all distinct label group names in a groundTruthLidar object, enter this command at the
MATLAB command prompt.

unique(gTruth.LabelDefinitions.Group)

Example: 'Vehicles'
Example: "Vehicles"
Example: {'Vehicles','Signs'}
Example: ["Vehicles" "Signs"]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth with only the selected labels, returned as a groundTruthLidar object or vector of
groundTruthLidar objects.

Each groundTruthLidar object in the gtLabel output corresponds to a groundTruthLidar
object in the gTruth input. The returned objects contain only those labels from the input ground
truth objects that are of the label groups specified by the labelGroup input.

2 Objects

2-78

See Also
Objects
groundTruthLidar

Functions
selectLabels | selectLabelsByType | selectLabelsByName

Introduced in R2020b

 selectLabelsByGroup

2-79

selectLabelsByName
Select ground truth data by label name

Syntax
gtLabel = selectLabelsByName(gTruth,labelNames)

Description
gtLabel = selectLabelsByName(gTruth,labelNames) selects ground truth data of the
specified label names labelNames from a groundTruthLidar object gTruth. The function returns
a corresponding groundTruthLidar object gtLabel that contains only the selected labels. If
gTruth is a vector of groundTruthLidar objects, then the function returns a vector of
corresponding groundTruthLidar objects that contain only the selected labels.

Examples

Select Ground Truth Lidar Labels by Label Name

Load a groundTruthLidar object containing labels of various groups, types, and names.
lidarDir = fullfile(matlabroot,'toolbox','lidar','lidardata','lidarLabeler');
addpath(lidarDir)
load('lidarLabelerGTruth.mat')

Inspect the label definitions. The object contains label definitions with various names.

lidarLabelerGTruth.LabelDefinitions

ans =

 5×5 table

 Name Type LabelColor Group Description
 ______________ ______ ____________ ___________ ___________

 {'car' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'bike' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'pole' } Cuboid {1×3 double} {'None' } {0×0 char}
 {'vegetation'} Cuboid {1×3 double} {'None' } {0×0 char}
 {'road' } Scene {1×3 double} {'None' } {0×0 char}

Create a new groundTruthLidar object that contains only the label definitions with the name
'car'.

labelNames = 'car';
gtLidarLabel = selectLabelsByName(lidarLabelerGTruth,labelNames)

gtLidarLabel =

 groundTruthLidar with properties:

 DataSource: [1×1 vision.labeler.loading.PointCloudSequenceSource]
 LabelDefinitions: [1×5 table]
 LabelData: [1×1 timetable]

2 Objects

2-80

View the label definitions of the returned groundTruthLidar object.

gtLidarLabel.LabelDefinitions

ans =

 1×5 table

 Name Type LabelColor Group Description
 _______ ______ ____________ ___________ ___________

 {'car'} Cuboid {1×3 double} {'vehicle'} {0×0 char}

Input Arguments
gTruth — Ground truth lidar data
groundTruthLidar object | vector of groundTruthLidar objects

Lidar ground truth data, specified as a groundTruthLidar object or vector of groundTruthLidar
objects.

labelNames — Label names
character vector | string scalar | cell array of character vectors | vector of strings

Label names, specified as a character vector, string scalar, cell array of character vectors, or vector of
strings.

To view all distinct label names in a groundTruthLidar object gTruth, enter this command at the
MATLAB command prompt.

unique(gTruth.LabelDefinitions.Name)

Example: 'car'
Example: "car"
Example: {'car','lane'}
Example: ["car" "lane"]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth with only the selected labels, returned as a groundTruthLidar object or vector of
groundTruthLidar objects.

Each groundTruthLidar object in gtLabel corresponds to a groundTruthLidar object in the
gTruth input. The returned objects contain only the labels that are of the label names specified by
the labelNames input.

See Also
Objects
groundTruthLidar

 selectLabelsByName

2-81

Functions
selectLabels | selectLabelsByGroup | selectLabelsByType

Introduced in R2020b

2 Objects

2-82

selectLabelsByType
Select ground truth data by label type

Syntax
gtLabel = selectLabelsByType(gTruth,labelTypes)

Description
gtLabel = selectLabelsByType(gTruth,labelTypes) selects labels of the types specified by
labelTypes from a groundTruthLidar object gTruth. The function returns a corresponding
groundTruthLidar object gtLabel that contains only the selected labels. If gTruth is a vector of
groundTruthLidar objects, then the function returns a vector of corresponding
groundTruthLidar objects that contain only the selected labels.

Examples

Select Ground Truth Lidar Labels by Label Type

Load a groundTruthLidar object containing labels of various groups, types, and names into the
workspace.
lidarDir = fullfile(matlabroot,'toolbox','lidar','lidardata','lidarLabeler');
addpath(lidarDir)
load('lidarLabelerGTruth.mat')

Inspect the label definitions. The object contains label definitions of type Cuboid and Scene.

lidarLabelerGTruth.LabelDefinitions

ans =

 5×5 table

 Name Type LabelColor Group Description
 ______________ ______ ____________ ___________ ___________

 {'car' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'bike' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'pole' } Cuboid {1×3 double} {'None' } {0×0 char}
 {'vegetation'} Cuboid {1×3 double} {'None' } {0×0 char}
 {'road' } Scene {1×3 double} {'None' } {0×0 char}

Create a new groundTruthLidar object that contains only the label definitions with the type
'Cuboid'.

labelType = labelType.Cuboid;
gtLidarLabel = selectLabelsByType(lidarLabelerGTruth,labelType)

 =

 groundTruthLidar with properties:

 DataSource: [1×1 vision.labeler.loading.PointCloudSequenceSource]
 LabelDefinitions: [4×5 table]
 LabelData: [1×4 timetable]

 selectLabelsByType

2-83

View the label definitions of the returned groundTruthLidar object.

lidarLabelerGTruth.LabelDefinitions

ans =

 4×5 table

 Name Type LabelColor Group Description
 ______________ ______ ____________ ___________ ___________

 {'car' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'bike' } Cuboid {1×3 double} {'vehicle'} {0×0 char}
 {'pole' } Cuboid {1×3 double} {'None' } {0×0 char}
 {'vegetation'} Cuboid {1×3 double} {'None' } {0×0 char}

Input Arguments
gTruth — Ground truth lidar data
groundTruthLidar object | vector of groundTruthLidar objects

Lidar ground truth data, specified as a groundTruthLidar object or vector of groundTruthLidar
objects.

labelTypes — Label types
labelType enumeration | vector of labelType enumerations

Label types, specified as a labelType enumeration or vector of labelType enumerations.

To view all distinct label types in a groundTruthLidar object, enter this command at the MATLAB
command prompt.

unique(gTruth.LabelDefinitions.LabelType)

Example: labelType.Cuboid
Example: [labelType.Cuboid labelType.Scene]

Output Arguments
gtLabel — Ground truth with only selected labels
groundTruthLidar object | vector of groundTruthLidar objects

Ground truth with only the selected labels, returned as a groundTruthLidar object or vector of
groundTruthLidar objects.

Each groundTruthLidar object in gtLabel corresponds to a groundTruthLidar object in the
gTruth input. The returned objects contain only the labels that are of the label types specified by the
labelTypes input.

See Also
Objects
groundTruthLidar

Functions
selectLabels | selectLabelsByGroup | selectLabelsByName

2 Objects

2-84

Introduced in R2020b

 selectLabelsByType

2-85

ibeoLidarReader
Ibeo data container (IDC) file reader

Description
Ibeo Automotive Systems is a manufacturer of lidar sensor-based devices. The data captured by these
devices is stored in IDC files. An IDC file reader object reads Ibeo FUSION SYSTEM or ECU scan
data and Ibeo point cloud plane data from IDC files.

The reader currently supports message data types 0x2205 and 0x7510 in IDC files. These data types
represent the Ibeo FUSION SYSTEM or ECU scan data and Ibeo point cloud plane data, respectively.

Creation

Syntax
ibeoReader = ibeoLidarReader(fileName)

Description

ibeoReader = ibeoLidarReader(fileName) creates an ibeoLidarReader object that reads
metadata from IDC file.

Properties
FileName — Name of IDC file
character vector | string scalar

This property is read-only.

Name of IDC file, stored as a character vector or string scalar.

MessageTypes — List of supported message types
string scalar | vector of strings

This property is read-only.

List of supported message types available in the IDC file, stored as a string scalar or as a vector of
strings. The possible values of this property are "Scan", "PointCloudPlane", or a vector
containing both.

NumMessages — Total number of supported messages
positive integer

This property is read-only.

Total number of supported messages available in the IDC file, stored as a positive integer.

2 Objects

2-86

FileInfo — Information on supported messages
table object

This property is read-only.

Information on supported messages, stored as a table object.

MessageType DataType Description NumMessages TimeStamps
"Scan" "0x2205" "Ibeo FUSION

SYSTEM/ECU
scan data"

30 30-by-1 datetime
arrays

"PointCloudPla
ne"

"0x7510" "Ibeo point
cloud plane"

40 40-by-1 datetime
arrays

• MessageType – Type of message
• DataType – Data type of message.
• Description – Message data description.
• NumMessages – Number of messages available in the file.
• TimeStamps – Timestamp values for each message in the file, stored as a NumMessages-element

column vector of datetime arrays.

Object Functions
readMessages Read Ibeo scan data and point cloud plane messages

See Also
Functions
pcread | pcshow | readMessages

Objects
lasFileReader | pointCloud | velodyneFileReader

Introduced in R2020b

 ibeoLidarReader

2-87

readMessages
Read Ibeo scan data and point cloud plane messages

Syntax
ptCloud = readMessages(ibeoReader)
[ptCloud,messageData] = readMessages(ibeoReader)
[___] = readMessages(ibeoReader,Name,Value)

Description
ptCloud = readMessages(ibeoReader) reads Ibeo FUSION SYSTEM/ECU scan data and Ibeo
point cloud plane messages from an Ibeo data container (IDC) file. The function returns an array of
pointCloud objects, where each object contains individual message data.

[ptCloud,messageData] = readMessages(ibeoReader) additionally returns the message type
and timestamp for each message. If the message is a point cloud plane message, the function also
returns additional plane information.

[___] = readMessages(ibeoReader,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input argument. For example, 'Messages',"Scan" sets the
message type to read from the IDC file to "Scan".

Input Arguments
ibeoReader — IDC file reader
ibeoLidarReader object

IDC file reader, specified as an ibeoLidarReader object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Messages',"Scan" sets the readMessages function to only read Ibeo scan data
messages from the IDC file.

Messages — Message types to read
["Scan" "PointCloudPlane"] (default) | string scalar | vector of strings | character vector | cell
array of character vectors

Message types to read from the IDC file, specified as the comma-separated pair consisting of
'Messages' and a string scalar, vector of strings, character vector, or a cell array of character
vectors. Each element must be one of these valid message types:

• "Scan"
• "PointCloudPlane"

2 Objects

2-88

Data Types: string | char | cell

Time — Timestamps of messages
total file duration (default) | datetime arrays | 2-element vector of datetime arrays

Timestamps of messages, specified as the comma-separated pair consisting of 'Time' and one of
these options:

• datetime array — Represents a single timestamp
• 1-by-2 datetime array — Represents all timestamps in the range [startTime endTime].

Data Types: datetime

Output Arguments
ptCloud — Point cloud array
array of pointCloud objects

Point cloud array, returned as an array of pointCloud objects. Each element of the returned array is
a point cloud that contains the data of a single message.

messageData — Information on messages read from file
cell array of structures

Information on messages read from the file, returned as a cell array of structures. Each structure
contains this information for a single message.

• MessageType – Type of message, returned as "Scan" or "PointCloudPlane".
• TimeStamp – Timestamp value for each message in the file, returned as a datetime array.

If the value of the MessageType field for a message is "PointCloudPlane", then the structure
contains this additional plane information.

• Label – Classification type of all points in the point cloud, returned as one of these values.

• "Undefined"
• "ScanPoint"
• "LanePoint"
• "CurbstonePoint"
• "GuardrailPoint"
• "RoadmarkingPoint"
• "OffRoadMarkingPoint"

• ReferencePoint – Reference point for the plane points, returned as a three-element vector that
contains the longitude and latitude of the point in degrees and the altitude in meters.

• PlaneOrientation – Plane orientation, returned as a three-element vector that contains the
yaw, pitch, and roll of the plane in degrees.

See Also
Functions
pcread | pcshow

 readMessages

2-89

Objects
ibeoLidarReader | lasFileReader | pointCloud | velodyneFileReader

Introduced in R2020b

2 Objects

2-90

labelDefinitionCreatorLidar
Store, modify, and create label definitions tables for lidar

Description
The labelDefinitionCreatorLidar object stores definitions of labels and attributes to label
ground truth data for a lidar workflow. Use various “Object Functions” on page 2-91 to add, remove,
modify, or display label definitions. Use the create object function to create a label definitions table
from the labelDefinitionCreatorLidar object. You can use this label definitions table with the
Lidar Labeler app.

Creation

Syntax
ldc = labelDefinitionCreatorLidar
ldc = labelDefinitionCreatorLidar(labelDefs)

Description

ldc = labelDefinitionCreatorLidar creates an empty label definition creator object, ldc, for
the lidar workflow. Add label definitions to this object, as well as modify or remove them, using
various “Object Functions” on page 2-91. Use the info object function to inspect the stored labels
and attributes.

ldc = labelDefinitionCreatorLidar(labelDefs) creates a label definition creator object,
ldc, for a lidar workflow that contains the definitions from the label definitions table labelDefs.

Input Arguments

labelDefs — Label definitions
table

Label definitions, returned as a table with up to eight columns. The possible columns are Name, Type,
Group, Description, LabelColor, and Hierarchy. This table contains the definitions and attributes of
labels used for labeling ground truth lidar data. For more details, see the labelDefinitions
property of the groundTruthLidar object.

Object Functions
addLabel Add label to label definition creator object for lidar workflow
addAttribute Add attribute to label in label definition creator for lidar workflow
editLabelGroup Modify label group name in label definition creator object for lidar

workflow
editLabelDescription Modify label description in label definition creator for lidar workflow
editAttributeDescription Modify attribute description in label definition creator object for lidar

workflow

 labelDefinitionCreatorLidar

2-91

editGroupName Change group name in label definition creator for lidar workflow
removeLabel Remove label from label definition creator for lidar workflow
removeAttribute Remove attribute from label in label definition creator for lidar workflow
create Create label definitions table from label definition creator object for lidar workflow
info Display label or attribute information stored in label definition creator for lidar workflow

Examples

Create Label Definition Creator Object for Lidar Workflow and Add Label Definitions

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator.

addLabel(ldc,'Vehicle','Cuboid')

Add a Color attribute to the Vehicle label as a list of three strings.

addAttribute(ldc,'Vehicle','Color','List',{'Red','White','Green'})

Display the details of the updated label definition creator object.

ldc

ldc =

labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 1 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Create a label definitions table from the definition stored in the object.

labelDefs = create(ldc)

labelDefs =

 1×6 table

 Name Type LabelColor Group Description Hierarchy
 ___________ ______ __________ ________ ___________ ____________

 {'Vehicle'} Cuboid {0×0 char} {'None'} {' '} {1×1 struct}

Create Label Definition Creator Object for Lidar Workflow from Label Definitions Table

Load a lidar label definitions table into the workspace.

lidarDir = fullfile(matlabroot,'toolbox','lidar','lidardata','lidarLabeler');
addpath(lidarDir)
load('lidarLabelerGTruth.mat')

Create a labelDefinitionCreatorLidar object from the label definitions table.

2 Objects

2-92

ldc = labelDefinitionCreatorLidar(lidarLabelerGTruth.LabelDefinitions)

ldc =

labelDefinitionCreatorLidar contains the following labels:

 car with 0 attributes and belongs to vehicle group. (info)
 bike with 0 attributes and belongs to vehicle group. (info)
 pole with 0 attributes and belongs to None group. (info)
 vegetation with 0 attributes and belongs to None group. (info)
 road with 0 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Add a new attribute to the car label.

addAttribute(ldc,'car','Color','List',{'Red','Green','Blue'})

Display the details of the updated labelDefinitionCreatorLidar object.

ldc

ldc =

labelDefinitionCreatorLidar contains the following labels:

 car with 1 attributes and belongs to vehicle group. (info)
 bike with 0 attributes and belongs to vehicle group. (info)
 pole with 0 attributes and belongs to None group. (info)
 vegetation with 0 attributes and belongs to None group. (info)
 road with 0 attributes and belongs to None group. (info)

See Also
Apps
Lidar Labeler

Objects
groundTruthLidar

Introduced in R2020b

 labelDefinitionCreatorLidar

2-93

addAttribute
Add attribute to label in label definition creator for lidar workflow

Syntax
addAttribute(ldc,labelName,attributeName,typeOfAttribute,attributeDefault)
addAttribute(___ ,Name,Value)

Description
addAttribute(ldc,labelName,attributeName,typeOfAttribute,attributeDefault)
adds an attribute with the specified name and type to the indicated label. The attribute is added to
the hierarchy of the specified label in the labelDefinitionCreatorLidar object ldc.

addAttribute(___ ,Name,Value) specifies options using one or more name-value pair arguments
in addition to the input arguments in the previous syntax.

Examples
Add Label and Attribute Using Label Definition Creator for Lidar Workflow

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar

Add a Cuboid label, Vehicle, to the label definition creator.

addLabel(ldc, 'Vehicle', 'Cuboid');

Add a Color attribute to the Vehicle label as a string.

addAttribute(ldc,'Vehicle','Color','String','Red')

Display the details of the updated label definition creator object.

ldc

ldc =

labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 1 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Display information about the label Vehicle using the info object function .

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Cuboid
 LabelColor: {''}

2 Objects

2-94

 Group: "None"
 Attributes: "Color"
 Description: ' '

Display information about the Color attribute of the Vehicle label using the info object function.

info(ldc,'Vehicle/Color')

 Name: "Color"
 Type: String
 DefaultValue: 'Red'
 Description: ' '

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This sets the label to which to add the
attribute.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar. This sets the attribute to add to the
label.

typeOfAttribute — Type of attribute
attributeType enumeration | character vector | string scalar

Type of attribute, specified using one of these options:

• attributeType enumeration — Specify the attribute as a Numeric, Logical, String, or List
attributeType enumerator. For example, attributeType.String specifies a String
attribute type.

• Character vector or string scalar — Specify a value that partially or fully matches one of the
attributeType enumerators. For example, Str specifies a String attribute type.

attributeDefault — Default value of attribute
valid attribute value

Default value of the attribute, specified as a valid attribute value depending on the value of the
typeOfAttribute argument:

• Numeric — Specify the value as a numeric scalar.
• Logical — Specify the value as a logical scalar.
• String — Specify the value as a character vector or string scalar.

 addAttribute

2-95

• List — Specify the value as a cell array of character vectors or string scalars. The first element of
the cell array is the default value.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Description','car' sets the description of the added label attribute to 'car'.

Description — Attribute description
' ' (default) | character vector | string scalar

Attribute description, specified as the comma-separated pair consisting of 'Description' and a
character vector or string scalar. Use this name-value pair argument to describe the attribute.

See Also
Objects
labelDefinitionCreatorLidar

Functions
addLabel | editAttributeDescription | removeAttribute

Introduced in R2020b

2 Objects

2-96

addLabel
Add label to label definition creator object for lidar workflow

Syntax
addLabel(ldc,labelName,typeOfLabel)
addLabel(___ ,Name,Value)

Description
addLabel(ldc,labelName,typeOfLabel) adds a label with the specified name and type to the
labelDefinitionCreatorLidar object ldc.

addLabel(___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to the input arguments in the previous syntax. For example, Group, truck sets the group of
the added label to truck.

Examples
Add Labels Using Label Definition Creator for Lidar Workflow

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc, 'Vehicle', 'Cuboid');

Add a Scene label, Bike, to the object.

addLabel(ldc, 'Bike', 'Scene');

Display the details of the updated label definition creator object.

ldc

ldc =

labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 0 attributes and belongs to None group. (info)
 Bike with 0 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Display information about the Vehicle label using the info object function.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Cuboid

 addLabel

2-97

 LabelColor: {''}
 Group: "None"
 Attributes: []
 Description: ' '

Add Label with Additional Details

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object. Include Group and LabelColor
information for the label.

addLabel(ldc, 'Vehicle', 'Cuboid','Group',"Transport",'LabelColor',[1 0 0]);

Add a Scene label, TrafficSign, to the object. Include Group information for the label.

addLabel(ldc, 'TrafficSign', 'Scene','Group',"Data");

Display the details of the updated label definition creator object.

ldc

ldc =

labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 0 attributes and belongs to Transport group. (info)
 TrafficSign with 0 attributes and belongs to Data group. (info)

For more details about attributes, use the info method.

Display information about the Vehicle label using the info object function.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Cuboid
 LabelColor: {[1 0 0]}
 Group: "Transport"
 Attributes: []
 Description: ' '

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This sets the name of the label in the
label definition creator object.

2 Objects

2-98

typeOfLabel — Type of label
labelType enumerator | character vector | string scalar

Type of label, specified using one of these options. For example, labelType.Cuboid specifies a
Cuboid label type.

• labelType enumeration — Specify the type of label as a Scene or Cuboid labelType
enumerator.

• Character vector or string scalar — Specify a value that partially or fully matches one of the
labelType enumerators. For example, Cub specifies a Cuboid label type.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Group, truck sets the group of the added label to truck.

Group — Group name
'None' (default) | character vector | string scalar

Group name, specified as a comma-separated pair consisting of 'Group' and the character vector or
string scalar. Use this name-value pair arguments to specify a name for a group of labels.

Description — Label description
' ' (default) | character vector | string scalar

Label description, specified as a comma-separated pair consisting of 'Description' and the
character vector or string scalar. Use this name-value pair arguments to describe the label.

See Also
Objects
labelDefinitionCreatorLidar

Functions
addAttribute | editLabelDescription | removeLabel

Introduced in R2020b

 addLabel

2-99

create
Create label definitions table from label definition creator object for lidar workflow

Syntax
labelDefs = create(ldc)

Description
labelDefs = create(ldc) creates a label definitions table, labelDefs, from the
labelDefinitionCreatorLidar object ldc. You can import the labelDefs table into the Lidar
Labeler app to label ground truth lidar data.

Examples
Create Label Definitions Table from Label Definition Creator for Lidar Workflow

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc, 'Vehicle', 'Cuboid', 'Description', 'Use this label for Cars and buses.')

Add a logical attribute, IsCar, to the Vehicle label.
addAttribute(ldc,'Vehicle','IsCar','logical',true,'Description','Type of vehicle')

Create a label definitions table from the definitions stored in the object.

labelDefs = create(ldc)

labelDefs =

 1×6 table

 Name Type LabelColor Group Description Hierarchy
 ___________ ______ __________ ________ ______________________________________ ____________

 {'Vehicle'} Cuboid {0×0 char} {'None'} {'Use this label for Cars and buses.'} {1×1 struct}

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object. The object defines the labels and attributes used for generating the label definitions table
labelDefs.

2 Objects

2-100

Output Arguments
labelDefs — Label definitions
table

Label definitions, returned as a table with up to eight columns. The possible columns are Name, Type,
Group, Description, LabelColor, and Hierarchy. This table contains the definitions and attributes of
labels used for labeling ground truth lidar data. For more details, see the labelDefinitions
property of the groundTruthLidar object.

See Also
Objects
labelDefinitionCreatorLidar

Functions
addAttribute | addLabel | info

Introduced in R2020b

 create

2-101

editAttributeDescription
Modify attribute description in label definition creator object for lidar workflow

Syntax
editAttributeDescription(ldc,labelName,attributeName,description)

Description
editAttributeDescription(ldc,labelName,attributeName,description) modifies the
description of the specified attribute attributeName of the label labelName. The label must be
contained within the labelDefinitionCreatorLidar object ldc.

Examples
Modify Attribute Description in Label Definition Creator for Lidar Workflow

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc, 'Vehicle', 'Cuboid');

Add a Color attribute to the Vehicle label.

addAttribute(ldc,'Vehicle','Color','String','Red')

Display the created attribute.

info(ldc,'Vehicle/Color')

 Name: "Color"
 Type: String
 DefaultValue: 'Red'
 Description: ' '

Modify the attribute description.

editAttributeDescription(ldc,'Vehicle','Color','Color of the vehicle in RGB format - [1 0 0]')

Display the attribute details to confirm the updated description field.

info(ldc,'Vehicle/Color')

 Name: "Color"
 Type: String
 DefaultValue: 'Red'
 Description: 'Color of the vehicle in format RGB - [1 0 0]'

2 Objects

2-102

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This identifies the label with which the
attribute is associated.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar. This identifies the attribute to modify.

description — Description
character vector | string scalar

Description, specified as a character vector or string scalar. This sets the new description for the
attribute specified by the attributeName.

See Also
Objects
labelDefinitionCreatorLidar

Functions
editLabelDescription

Introduced in R2020b

 editAttributeDescription

2-103

editGroupName
Change group name in label definition creator for lidar workflow

Syntax
editGroupName(ldc,oldname,newname)

Description
editGroupName(ldc,oldname,newname) changes the existing group name oldname to the
specified group name newname. This function changes the group name for all label definitions that
have the group name oldname.

Examples
Edit Label Group in Label Definition Creator for Lidar Workflow

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid')

Display information about the label.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Cuboid
 LabelColor: {''}
 Group: "None"
 Attributes: []
 Description: ' '

Edit the group name of the label.

editGroupName(ldc,'None','Transport')

Display the information of the label. Confirm that the Group field is updated.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Cuboid
 LabelColor: {''}
 Group: "Transport"
 Attributes: []
 Description: ' '

2 Objects

2-104

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

oldname — Existing group name
character vector | string scalar

Existing group name, specified as a character vector or string scalar. This identifies group name to
modify. The group name must already exist within the specified label definition creator object.

newname — New group name
character vector | string scalar

New group name, specified as a character vector or string scalar. This sets the new group name.

See Also
Objects
labelDefinitionCreatorLidar

Functions
editLabelDescription | editLabelGroup

Introduced in R2020b

 editGroupName

2-105

editLabelDescription
Modify label description in label definition creator for lidar workflow

Syntax
editLabelDescription(ldc,labelName,description)

Description
editLabelDescription(ldc,labelName,description) modifies the description of the
specified label labelName. The label must be contained within the
labelDefinitionCreatorLidar object ldc.

Examples
Modify Label Description in Label Definition Creator for Lidar Workflow

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid')

Display the label information using the info object function.

 Name: "Vehicle"
 Type: Cuboid
 LabelColor: {''}
 Group: "None"
 Attributes: []
 Description: ' '

Modify the description of the Vehicle label.
editLabelDescription(ldc, 'Vehicle', 'Use this label for cars and buses.')

Display the label information. Confirm that the Description field has been updated.

info(ldc, 'Vehicle')

 Name: "Vehicle"
 Type: Cuboid
 LabelColor: {''}
 Group: "None"
 Attributes: []
 Description: 'Use this label for cars and buses.'

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

2 Objects

2-106

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This identifies the label to update.

description — Description
character vector | string scalar

Description, specified as a character vector or string scalar. This sets the new description for the
label specified by the labelName argument.

See Also
Objects
labelDefinitionCreatorLidar

Functions
editAttributeDescription

Introduced in R2020b

 editLabelDescription

2-107

editLabelGroup
Modify label group name in label definition creator object for lidar workflow

Syntax
editLabelGroup(ldc,labelName,groupName)

Description
editLabelGroup(ldc,labelName,groupName) modifies the group name of the specified label
identified by labelName. The label must be contained within the labelDefinitionCreatorLidar
object ldc.

Examples

Modify Label Group Name in Label Definition Creator for Lidar Workflow

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid','Group','Transport')

Add a Cuboid label, Car, to the label definition creator object.

addLabel(ldc,'Car','Cuboid','Group','Four Wheeler')

Display the label definition creator object.

ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 0 attributes and belongs to Transport group. (info)
 Car with 0 attributes and belongs to Four Wheeler group. (info)

For more details about attributes, use the info method.

Change the group of the Car label from Four Wheeler to Transport.

editLabelGroup(ldc,'Car','Transport')
ldc

ldc =
labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 0 attributes and belongs to Transport group. (info)
 Car with 0 attributes and belongs to Transport group. (info)

2 Objects

2-108

For more details about attributes, use the info method.

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This identifies the label to modify.

groupName — Group name
character vector | string scalar

Group name, specified as a character vector or string scalar. This sets the group to which the function
assigns the label specified by the labelName argument.

See Also
Objects
labelDefinitionCreatorLidar

Functions
editGroupName | editLabelDescription

Introduced in R2020b

 editLabelGroup

2-109

info
Display label or attribute information stored in label definition creator for lidar workflow

Syntax
info(ldc,name)
infoStruct = info(ldc,name)

Description
info(ldc,name) displays information about the specified label or attribute name stored in the
labelDefinitionCreatorLidar object ldc.

infoStruct = info(ldc,name) returns the information as a structure.

Examples
Save Definitions from Label Definition Creator for Lidar Workflow

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, with Group and Description information to the label definition
creator object.

addLabel(ldc,'Vehicle','Cuboid','Group','Transport','Description','Use this label for cars and buses')

Create a structure array containing the label information.

infoStruct = info(ldc,'Vehicle')

infoStruct =

 struct with fields:

 Name: "Vehicle"
 Type: Cuboid
 LabelColor: {''}
 Group: "Transport"
 Attributes: []
 Description: 'Use this label for cars and buses'

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

2 Objects

2-110

name — Name of label or attribute
character vector | string scalar

Name of the label or attribute in the ldc object, specified as a character vector or string scalar. The
form of the argument depends on the type of name specified.

• To specify a label, use the form 'labelName'. For example, 'TrafficLight' specifies the label
with the label name TrafficLight.

• To specify an attribute, use the form 'labelName/attributeName'. For example, 'TrafficLight/
Active' specifies the Active attribute of the label with the label name TrafficLight.

Output Arguments
infoStruct — Information structure
structure

Information structure, returned as a structure that contains the fields Name, SignalType (for labels),
LabelType (for labels), Type (for attributes), Description, Attributes (when pertinent),
DefaultValue (for attributes), and ListItems (for List attributes).

See Also
Objects
labelDefinitionCreatorLidar

Functions
addLabel | create

Introduced in R2020b

 info

2-111

removeAttribute
Remove attribute from label in label definition creator for lidar workflow

Syntax
removeAttribute(ldc,labelName,attributeName)

Description
removeAttribute(ldc,labelName,attributeName) removes the specified attribute
attributeNamefrom the label labelName in the labelDefinitionCreatorLidar object ldc.

Examples
Remove Attribute from Label in Label Definition Creator Lidar

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid')

Add a String attribute, Color, to the Vehicle label.

addAttribute(ldc,'Vehicle','Color','String','Red')

Add another String attribute, Classification, to the label.

addAttribute(ldc,'Vehicle','Classification','String','Car')

Display the label information using the info object function.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Cuboid
 LabelColor: {''}
 Group: "None"
 Attributes: ["Color" "Classification"]
 Description: ' '

Remove an attribute from the Vehicle label.

removeAttribute(ldc,'Vehicle','Color')

Display the label information. Confirm that the Attributes field has been updated.

info(ldc,'Vehicle')

 Name: "Vehicle"
 Type: Cuboid

2 Objects

2-112

 LabelColor: {''}
 Group: "None"
 Attributes: "Classification"
 Description: ' '

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This identifies the label from which to
remove the attribute.

attributeName — Attribute name
character vector | string scalar

Attribute name, specified as a character vector or string scalar. This identifies the attribute to remove
from the label specified by the labelName argument.

See Also
Objects
labelDefinitionCreatorLidar

Functions
addAttribute | addLabel | removeLabel

Introduced in R2020b

 removeAttribute

2-113

removeLabel
Remove label from label definition creator for lidar workflow

Syntax
removeLabel(ldc,labelName)

Description
removeLabel(ldc,labelName) removes the specified label labeName from the
labelDefinitionCreatorLidar object ldc.

Examples
Remove Label from Label Definition Creator for Lidar Workflow

Create an empty labelDefinitionCreatorLidar object.

ldc = labelDefinitionCreatorLidar;

Add a Cuboid label, Vehicle, to the label definition creator object.

addLabel(ldc,'Vehicle','Cuboid')

Add a Cuboid label, Car, to the object.

addLabel(ldc,'Car','Cuboid')

Display the label definition creator object.

ldc

ldc =

labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 0 attributes and belongs to None group. (info)
 Car with 0 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

Remove the 'Car' label and display the object to confirm that the label has been removed.

removeLabel(ldc,'Car')
ldc

ldc =

labelDefinitionCreatorLidar contains the following labels:

 Vehicle with 0 attributes and belongs to None group. (info)

For more details about attributes, use the info method.

2 Objects

2-114

Input Arguments
ldc — Label definition creator for lidar workflow
labelDefinitionCreatorLidar object

Label definition creator for the lidar workflow, specified as a labelDefinitionCreatorLidar
object.

labelName — Label name
character vector | string scalar

Label name, specified as a character vector or string scalar. This identifies the label to remove from
the label definition creator object.

See Also
Objects
labelDefinitionCreatorLidar

Functions
addLabel | addAttribute | removeAttribute

Introduced in R2020b

 removeLabel

2-115

vision.labeler.loading.MultiSignalSource class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: matlab.mixin.Heterogeneous

Interface for loading signal data into Lidar Labeler app

Description
The vision.labeler.loading.MultiSignalSource class creates an interface for loading a point
cloud signal from a data source into the Lidar Labeler app.

The interface created using this class enables you to customize the panel for loading data sources in
the Select Point Cloud dialog box of the app. The figure shows a sample loading panel.

The class also provides an interface to read frames from loaded signals. The app renders these
frames for labeling.

The class supports loading these data sources:

• vision.labeler.loading.PointCloudSequenceSource — Point cloud sequence folder
• vision.labeler.loading.VelodyneLidarSource — Velodyne packet capture (PCAP) file
• lidar.labeler.loading.LasFileSequenceSource — LAS or LAZ file
• lidar.labeler.loading.RosbagSource — Rosbag file
• lidar.labeler.loading.CustomPointCloudSource — Custom source file

The vision.labeler.loading.MultiSignalSource class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

2 Objects

2-116

Properties
Name — Name of source type
string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

Description — Description of class functionality
string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Abstract true
Constant true
NonCopyable true

SourceName — Name of data source
string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading signals from data source
structure

Parameters for loading signals from the data source into the app, specified as a structure. The fields
of this structure contain values that the loadSource method requires to load the signal.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

 vision.labeler.loading.MultiSignalSource class

2-117

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
nonnegative integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

Abstract true

2 Objects

2-118

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

Abstract true

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

Abstract true

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

Abstract true

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

 vision.labeler.loading.MultiSignalSource class

2-119

See Also
Apps
Lidar Labeler

Introduced in R2020b

2 Objects

2-120

vision.labeler.loading.PointCloudSequenceSource
class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from point cloud sequence sources into Lidar Labeler app

Description
The vision.labeler.loading.PointCloudSequenceSource class creates an interface for
loading a signal from a point cloud sequence data source into the Lidar Labeler app. In the Select
Point Cloud dialog box of the app, when Source Type is set to Point Cloud Sequence, this class
controls the parameters in that dialog box.

To access this dialog box, in the app, select Import > Add Point Cloud.

This class loads point cloud sequences composed of PCD or PLY files.

The vision.labeler.loading.PointCloudSequenceSource class is a handle class.

Creation
When you export labels from a Lidar Labeler app session that contains a point cloud sequence
source, the exported groundTruthLidar object stores an instance of this class in its DataSource
property.

To create a PointCloudSequenceSource object programmatically, such as when programmatically
creating a groundTruthLidar object, use the
vision.labeler.loading.PointCloudSequenceSource function (described here).

 vision.labeler.loading.PointCloudSequenceSource class

2-121

Syntax
pcSeqSource = vision.labeler.loading.PointCloudSequenceSource

Description

pcSeqSource = vision.labeler.loading.PointCloudSequenceSource creates a
PointCloudSequenceSource object for loading a signal from a point cloud sequence data source.
To specify the data source and the parameters required to load the source, use the loadSource
method.

Properties
Name — Name of source type
"Point Cloud Sequence" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A PointCloud sequence reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading point cloud sequence signal from data source
[] (default) | structure

Parameters for loading a point cloud sequence signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.

2 Objects

2-122

Field Description Required or Optional
Timestamps Timestamps for the point cloud

sequence signal, specified as a
cell array containing a single
duration vector of timestamps.

In the Select Point Cloud dialog
box of the app, if you set the
Timestamps parameter to
From Workspace and read the
timestamps from a variable in
the MATLAB workspace, then
the SourceParams property
stores these timestamps in the
Timestamps field.

Optional

If you set the Timestamps
parameter to Use Default and
use the default timestamps for
point cloud sequence signals,
then the structure does not
include this field, and the
SourceParams property is
empty, []. For point cloud
sequence signals, the default
timestamp duration vector has
elements from 0 to the number
of valid point cloud files minus
1. Units are in seconds.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

 vision.labeler.loading.PointCloudSequenceSource class

2-123

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

2 Objects

2-124

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create Point Cloud Sequence Source

Specify the path to a folder containing a point cloud sequence.

pcSeqFolder = fullfile(toolboxdir('vision'),'visiondata', ...
 'pcdmapseq');

Create a point cloud sequence source. The sequence does not have a separate timestamps file to load
with it, so specify the source parameters as empty. Load the folder path and the empty source
parameters into the PointCloudSequenceSource object.

sourceName = pcSeqFolder;
sourceParams = [];

pcseqSource = vision.labeler.loading.PointCloudSequenceSource;
loadSource(pcseqSource,sourceName,sourceParams)

Read the first frame in the sequence. Display the frame.

signalName = pcseqSource.SignalName;
pc = readFrame(pcseqSource,signalName,1);

figure
pcshow(pc)

 vision.labeler.loading.PointCloudSequenceSource class

2-125

See Also
Apps
Lidar Labeler

Classes
lidar.labeler.loading.LasFileSequenceSource |
lidar.labeler.loading.RosbagSource | vision.labeler.loading.VelodyneLidarSource

Introduced in R2020b

2 Objects

2-126

vision.labeler.loading.VelodyneLidarSource class
Package: vision.labeler.loading vision.labeler.loading vision.labeler.loading
vision.labeler.loading vision.labeler.loading vision.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from Velodyne lidar sources into Lidar Labeler app

Description
The vision.labeler.loading.VelodyneLidarSource class creates an interface for loading a
signal from a Velodyne packet capture (PCAP) lidar data source into the Lidar Labeler app. In the
Select Point Cloud dialog box of the app, when Source Type is set to Velodyne Lidar, this class
controls the parameters in that dialog box.

To access this dialog box, in the app, select Import > Add Point Cloud.

This class loads Velodyne PCAP files from the device models accepted by the velodyneFileReader
function.

The vision.labeler.loading.VelodyneLidarSource class is a handle class.

Creation
When you export labels from a Lidar Labeler app session that contains a Velodyne lidar source, the
exported groundTruthLidar object stores an instance of this class in its DataSource property.

To create a VelodyneLidarSource object programmatically, such as when programmatically
creating a groundTruthLidar object, use the
vision.labeler.loading.VelodyneLidarSource function (described here).

Syntax
velodyneSource = vision.labeler.loading.VelodyneLidarSource

 vision.labeler.loading.VelodyneLidarSource class

2-127

Description

velodyneSource = vision.labeler.loading.VelodyneLidarSource creates a
VelodyneLidarSource object for loading a signal from a Velodyne lidar data source. To specify the
data source and the parameters required to load the source, use the loadSource method.

Properties
Name — Name of source type
"Velodyne Lidar" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A Velodyne file reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading Velodyne lidar signal from data source
[] (default) | structure

Parameters for loading a Velodyne lidar signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.

2 Objects

2-128

Field Description Required or Optional
Timestamps Timestamps for the Velodyne

lidar signal, specified as a cell
array containing a single
duration vector of timestamps.

In the Select Point Cloud dialog
box of the app, if you set the
Timestamps parameter to
From Workspace and read the
timestamps from a variable in
the MATLAB workspace, then
the SourceParams property
stores these timestamps in the
Timestamps field.

Optional

In the Select Point Cloud dialog
box of the app, if you set the
Timestamps parameter to
From File and read the
timestamps from the Velodyne
PCAP file, then the structure
does not include this field.

DeviceModel Velodyne device model name,
specified as one of these
options.

If you specify the incorrect
device model for your Velodyne
PCAP file, the app loads an
improperly calibrated point
cloud.

In the Select Point Cloud dialog
box of the app, select the device
model from the Device Model
parameter. The Calibration
File parameter updates to the
calibration file of the selected
device model.

Required

 vision.labeler.loading.VelodyneLidarSource class

2-129

Field Description Required or Optional
CalibrationFile Name of the Velodyne

calibration XML file, specified
as a character vector or string
scalar.

To specify one of the calibration
files included with your
MATLAB installation, at the
MATLAB command prompt,
enter this code. Replace
<DeviceModel> with the name
of the device model that you
specify in the DeviceModel
field of this structure (without
quotes).
calibrationFile = fullfile(...
 matlabroot,'toolbox', ...
 'shared','pointclouds','utilities', ...
 'velodyneFileReaderConfiguration', ...
 '<DeviceModel>.xml')

By default, the
CalibrationFile field is set
to the full path to the
VLP16.xml file, which is the
calibration file for the VLP-16
device model.

In the Select Point Cloud dialog
box of the app, when you
change the Device Model
parameter selection, the
Calibration File parameter
updates to the corresponding
calibration file for the selected
device model. You can also
browse for or enter a path to a
different calibration file in the
Calibration File box.

Required

For more details on device models and calibration files, see the velodyneFileReader object
reference page.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

2 Objects

2-130

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

 vision.labeler.loading.VelodyneLidarSource class

2-131

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create Velodyne Lidar Source

Specify the name of the Velodyne® lidar data source, a packet capture (PCAP) file.

2 Objects

2-132

sourceName = fullfile(toolboxdir('vision'),'visiondata', ...
 'lidarData_ConstructionRoad.pcap');

Specify information needed to load the source, including the device model of the lidar and the
calibration file.

sourceParams = struct;
sourceParams.DeviceModel = 'HDL32E';
sourceParams.CalibrationFile = fullfile(matlabroot,'toolbox','shared', ...
 'pointclouds','utilities','velodyneFileReaderConfiguration', ...
 'HDL32E.xml');

Create the Velodyne lidar data source. Load the data source path, device model, and calibration file
path into the VelodyneLidarSource object.

velodyneSource = vision.labeler.loading.VelodyneLidarSource;
loadSource(velodyneSource,sourceName,sourceParams)

Read the first frame from the source. Display the frame.

signalName = velodyneSource.SignalName;
pc = readFrame(velodyneSource,signalName,1);

figure
pcshow(pc)

 vision.labeler.loading.VelodyneLidarSource class

2-133

See Also
Apps
Lidar Labeler

Classes
lidar.labeler.loading.LasFileSequenceSource |
lidar.labeler.loading.RosbagSource |
vision.labeler.loading.PointCloudSequenceSource

Introduced in R2020b

2 Objects

2-134

lidar.labeler.loading.LasFileSequenceSource class
Package: lidar.labeler.loading lidar.labeler.loading lidar.labeler.loading
lidar.labeler.loading lidar.labeler.loading lidar.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from LAS or LAZ file sequence sources into Lidar Labeler app

Description
The lidar.labeler.loading.LasFileSequenceSource class creates an interface for loading a
signal from a LAS or LAZ file sequence data source into the Lidar Labeler app. In the Select Point
Cloud dialog box of the app, when Source Type is set to LAS/LAZ File Sequence, this class
controls the parameters in that dialog box.

To access this dialog box, in the app, select Import > Add Point Cloud.

The lidar.labeler.loading.LasFileSequenceSource class is a handle class.

Creation
When you export labels from a Lidar Labeler app session that contains a LAS or LAZ file sequence
source, the exported groundTruthLidar object stores an instance of this class in its DataSource
property.

To create a LasFileSequenceSource object programmatically, such as when programmatically
creating a groundTruthLidar object, use the
lidar.labeler.loading.LasFileSequenceSource function (described here).

Syntax
lasSeqSource = lidar.labeler.loading.LasFileSequenceSource

 lidar.labeler.loading.LasFileSequenceSource class

2-135

Description

lasSeqSource = lidar.labeler.loading.LasFileSequenceSource creates a
LasFileSequenceSource object for loading a signal from a LAS or LAZ file sequence data source.
To specify the data source and the parameters required to load the source, use the loadSource
method.

Properties
Name — Name of source type
"LAS/LAZ File Sequence" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A LAS/LAZ file sequence reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading LAS or LAZ file sequence signal from data source
[] (default) | structure

Parameters for loading a LAS or LAZ file sequence signal from a data source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.

2 Objects

2-136

Field Description Required or Optional
Timestamps Timestamps for the LAS or LAZ

file sequence signal, specified as
a cell array containing a single
duration vector of timestamps.

In the Select Point Cloud dialog
box of the app, if you set the
Timestamps parameter to
From Workspace and read the
timestamps from a variable in
the MATLAB workspace, then
the SourceParams property
stores these timestamps in the
Timestamps field.

Optional

If you set the Timestamps
parameter to Use Default and
use the default timestamps for
LAS or LAZ file sequence
signals, then the structure does
not include this field, and the
SourceParams property is
empty, []. For LAS or LAZ file
sequence signals, the default
timestamp duration vector has
elements from 0 to the number
of valid LAS or LAZ files minus
1. Units are in seconds.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

 lidar.labeler.loading.LasFileSequenceSource class

2-137

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

2 Objects

2-138

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

Examples

Create LAS File Sequence Source

Specify the path to a folder containing a LAS file sequence.

lasSeqFolder = fullfile(toolboxdir('lidar'),'lidardata','las');

The LAS file consists of two point cloud frames that occur at one-second intervals. Specify the
timestamps of the frames as a duration vector of two seconds.

timestamps = seconds(1:2);

Create a LAS file sequence source. Load the folder path and timestamps into the
LasFileSequenceSource object.

sourceName = lasSeqFolder;
sourceParams = struct;
sourceParams.Timestamps = timestamps;

lasSeqSource = lidar.labeler.loading.LasFileSequenceSource;
loadSource(lasSeqSource,sourceName,sourceParams)

Read the second frame in the sequence. Display the frame.

signalName = lasSeqSource.SignalName;
pc = readFrame(lasSeqSource,signalName,2);

figure
pcshow(pc)

 lidar.labeler.loading.LasFileSequenceSource class

2-139

See Also
Apps
Lidar Labeler

Classes
lidar.labeler.loading.RosbagSource |
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.VelodyneLidarSource

Introduced in R2020b

2 Objects

2-140

lidar.labeler.loading.RosbagSource class
Package: lidar.labeler.loading lidar.labeler.loading lidar.labeler.loading
lidar.labeler.loading lidar.labeler.loading lidar.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load signals from rosbag sources into Lidar Labeler app

Description
The lidar.labeler.loading.RosbagSource class creates an interface for loading a signal from a
rosbag file into the Lidar Labeler app. In the Select Point Cloud dialog box of the app, when Source
Type is set to Rosbag, this class controls the parameters in that dialog box.

To access this dialog box, in the app, select Import > Add Point Cloud.

This class loads signals from the sensor_msgs/PointCloud2 ROS message type only.

Note This class requires ROS Toolbox.

The lidar.labeler.loading.RosbagSource class is a handle class.

Creation
When you export labels from a Lidar Labeler app session that contains a rosbag source, the
exported groundTruthLidar object stores an instance of this class in its DataSource property.

To create a RosbagSource object programmatically, such as when programmatically creating a
groundTruthLidar object, use the lidar.labeler.loading.RosbagSource function (described
here).

Syntax
rosbagSource = lidar.labeler.loading.RosbagSource

 lidar.labeler.loading.RosbagSource class

2-141

Description

rosbagSource = lidar.labeler.loading.RosbagSource creates a RosbagSource object for
loading a signal from a rosbag data source. To specify the data source and the parameters required to
load the source, use the loadSource method.

Properties
Name — Name of source type
"Rosbag" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A rosbag reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading signals from rosbag data source
[] (default) | empty structure

Parameters for loading signals from a rosbag data source, specified as an empty structure. When you
load a point cloud signal from a rosbag, do not specify the signal timestamps or any other
parameters. The loadSource method reads these parameters from the rosbag.

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

2 Objects

2-142

Names of the signals that can be loaded from the data source, specified as a string vector.

Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.

Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.

Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
0 (default) | integer

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

 lidar.labeler.loading.RosbagSource class

2-143

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

loadPanelChecker loadPanelChecker

Check the load panel for the loading dialog box of
the app. This method opens a dialog box similar
to the loading dialog box that you open from the
Open menu on the app toolstrip. Use this method
to preview how the customizeLoadPanel
method populates the loading panel for the
selected data source object.

Static true

See Also
Apps
Lidar Labeler

2 Objects

2-144

Classes
lidar.labeler.loading.LasFileSequenceSource |
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.VelodyneLidarSource

Introduced in R2020b

 lidar.labeler.loading.RosbagSource class

2-145

lidar.syncImageViewer.SyncImageViewer class
Package: lidar.syncImageViewer

Interface to connect external tool to Lidar Labeler app

Description
The lidar.syncImageViewer.SyncImageViewer class creates an interface between a custom
visualization or analysis tool and a point cloud signal in the Lidar Labeler app. You can use the
SyncImageViewer class to sync video and image sequence signals to the app only.

Creation
The SyncImageViewer specifies the interface for connecting an external tool to the Lidar Labeler
app. An external tool can be a custom visualization tool or custom analysis tool. The class that
inherits from the SyncImageViewer interface is called the client. The client performs these tasks:

• Syncs an external tool to each frame change event for a specific signal loaded into the Lidar
Labeler app. Syncing enables you to control the external tool through the range slider and
playback controls of the app.

• Controls the current time in the external tool and the corresponding display in the app.

To connect an external tool to the Lidar Labeler app, follow these steps:

1 Define a client class that inherits from lidar.syncImageViewer.SyncImageViewer. You can
use the SyncImageViewer class template to define a class and implement your custom
visualization or analysis tool. At the MATLAB command prompt, enter this code:

lidar.syncImageViewer.SyncImageViewer.openTemplateInEditor

Follow the steps in the template.
2 Save the file to any folder on the MATLAB path. Alternatively, save the file to a folder outside the

MATLAB path and add the folder to MATLAB path by using the addpath function.

Properties
VideoStartTime — Start time of signal
real scalar in seconds

Start time of the signal, specified as a real scalar in seconds.
Attributes:

GetAccess public
SetAccess private

VideoEndTime — End time of signal
real scalar in seconds

End time of the signal, specified as a real scalar in seconds.

2 Objects

2-146

Attributes:

GetAccess public
SetAccess private

StartTime — Start of time interval in app
real scalar in seconds

Start of the time interval in the app, specified as a real scalar in seconds. To set the start time, use
the start flag interval in the app.

Attributes:

GetAccess public
SetAccess private

CurrentTime — Time of frame currently displaying in app
real scalar in seconds

Time of the frame currently displaying in the app for the connected signal, specified as a real scalar
in seconds. If the slider is between two timestamps, then the currently displaying frame is the frame
that is at the previous timestamp.

Attributes:

GetAccess public
SetAccess private

EndTime — End of time interval in app
real scalar in seconds

End of the time interval in the app, specified as a real scalar in seconds. To set the end time, use the
end flag interval in the app.

Attributes:

GetAccess public
SetAccess private

TimeVector — Timestamps for connected signal
duration vector

Timestamps for the connected signal, specified as a duration vector. This signal must be the master
signal. If you change the master signal, the TimeVector property updates to the timestamps for new
master signal.

Attributes:

GetAccess public
SetAccess private

Methods
Public Methods
dataSourceChangeListener Update external tool when connecting to signal being loaded into Lidar

Labeler app

 lidar.syncImageViewer.SyncImageViewer class

2-147

frameChangeListener Update external tool when new frame is displayed in Lidar Labeler app
updateLabelerCurrentTime Update current time in Lidar Labeler app
close Close external tool connected to Lidar Labeler app
disconnect Disconnect external tool from Lidar Labeler app

Examples

Connect Image Display to Lidar Labeler

Connect an image display tool to the Lidar Labeler app. Use the app and tool to display
synchronized lidar and image data.

Specify the name of the lidar data to load into the app.

sourceName = fullfile('lidarSequence');

Connect the video display to the app and display synchronized data.

lidarLabeler(sourceName,'SyncImageViewerTargetHandle',@helperSyncImageDisplay);

2 Objects

2-148

Tips
• For an example of an external tool, see the SyncImageDisplay implementation of the

lidar.syncImageViewer.SyncImageViewer class. This class implements an image display
tool. You can use this code as a starting point for creating your own tools.

edit SyncImageDisplay

See Also
Apps
Lidar Labeler

Introduced in R2020b

 lidar.syncImageViewer.SyncImageViewer class

2-149

close
Class: lidar.syncImageViewer.SyncImageViewer
Package: lidar.syncImageViewer

Close external tool connected to Lidar Labeler app

Syntax
close(syncImageObj)

Description
close(syncImageObj) provides the option to close the external tool that is connected to the Lidar
Labeler app when the app closes. The app calls this method using the syncImageObj object.

Note The client class can optionally implement this method.

Input Arguments
syncImageObj — Synced image viewer
SyncImageViewer object

Synced image viewer, specified as a lidar.syncImageViewer.SyncImageViewer object.

See Also
Lidar Labeler | lidar.syncImageViewer.SyncImageViewer

Introduced in R2020b

2 Objects

2-150

dataSourceChangeListener
Class: lidar.syncImageViewer.SyncImageViewer
Package: lidar.syncImageViewer

Update external tool when connecting to signal being loaded into Lidar Labeler app

Syntax
dataSourceChangeListener(syncImageObj)

Description
dataSourceChangeListener(syncImageObj) provides the option to update the external tool
when loading a new data source is loaded into the Lidar Labeler app. The app calls this method
using the syncImageObj object.

Note The client class can optionally implement this method.

Input Arguments
syncImageObj — Synced image viewer
SyncImageViewer object

Synced image viewer, specified as a lidar.syncImageViewer.SyncImageViewer object.

See Also
Lidar Labeler | lidar.syncImageViewer.SyncImageViewer

Introduced in R2020b

 dataSourceChangeListener

2-151

disconnect
Class: lidar.syncImageViewer.SyncImageViewer
Package: lidar.syncImageViewer

Disconnect external tool from Lidar Labeler app

Syntax
disconnect(syncImageObj)

Description
disconnect(syncImageObj) disconnects the interface between an external tool and the Lidar
Labeler app. The client calls this method using the syncImageObj object. After the external tool is
disconnected, the Lidar Labeler app no longer calls the frameChangeListener method in the
client class.

Note The client class can call this method.

Input Arguments
syncImageObj — Synced image viewer
SyncImageViewer object

Synced image viewer, specified as a lidar.syncImageViewer.SyncImageViewer object.

See Also
Lidar Labeler | lidar.syncImageViewer.SyncImageViewer

Introduced in R2020b

2 Objects

2-152

frameChangeListener
Class: lidar.syncImageViewer.SyncImageViewer
Package: lidar.syncImageViewer

Update external tool when new frame is displayed in Lidar Labeler app

Syntax
frameChangeListener(syncImageObj)

Description
frameChangeListener(syncImageObj) provides an option to synchronize an external tool with
the frame changes in the Lidar Labeler app. The app calls this method when a new frame is
displayed in the app. If the slider is between two timestamps, then the app displays the frame that is
at the previous timestamp.

Note The client class must implement this method.

Input Arguments
syncImageObj — Synced image viewer
SyncImageViewer object

Synced image viewer, specified as a lidar.syncImageViewer.SyncImageViewer object.

See Also
Lidar Labeler | lidar.syncImageViewer.SyncImageViewer

Introduced in R2020b

 frameChangeListener

2-153

updateLabelerCurrentTime
Class: lidar.syncImageViewer.SyncImageViewer
Package: lidar.syncImageViewer

Update current time in Lidar Labeler app

Syntax
updateLabelerCurrentTime(syncImageObj,newTime)

Description
updateLabelerCurrentTime(syncImageObj,newTime) updates the current time in the Lidar
Labeler app to newTime. The client calls this method using the syncImageObj object.

Note The client class can call this method.

Input Arguments
syncImageObj — Synced image viewer
SyncImageViewer object

Synced image viewer, specified as a lidar.syncImageViewer.SyncImageViewer object.

newTime — Current time for app
real scalar in seconds

Current time for Lidar Labeler app, specified as a real scalar in seconds. The newTime value sets
the current time in the Lidar Labeler app.

See Also
Lidar Labeler | lidar.syncImageViewer.SyncImageViewer

Introduced in R2020b

2 Objects

2-154

lasFileReader
LAS or LAZ file reader

Description
The LAS file format is an industry-standard binary format for storing lidar data, developed and
maintained by the American Society for Photogrammetry and Remote Sensing (ASPRS). The LAZ file
format is a compressed version of the LAS file format.

A LAS file contains a public header, which has lidar metadata, followed by lidar point records. Each
point record contains attributes such as 3-D coordinates, intensity and GPS timestamp.

A lasFileReader object stores the metadata present in the LAS or LAZ file as read-only properties.
The object function, readPointCloud, uses these properties to read point cloud data from the file.

Creation

Syntax
lasReader = lasFileReader(fileName)

Description

lasReader = lasFileReader(fileName) reads the metadata from a LAS or LAZ file, fileName,
and stores it as properties of an output lasFileReader object, lasReader. The fileName input
sets the FileName property.

Properties
FileName — Name of LAS or LAZ file
character vector | string scalar

This property is read-only.

Name of the LAS or LAZ file, specified as a character vector or string scalar.

Count — Number of available point records
positive integer

This property is read-only.

Number of available point records in the file, specified as a positive integer.

LasVersion — LAS or LAZ file version
character vector

This property is read-only.

 lasFileReader

2-155

LAS or LAZ file version, specified as a character vector.

XLimits — Range of coordinates along x-axis
two-element row vector

This property is read-only.

Range of coordinates along the x-axis, specified as a two-element row vector.

YLimits — Range of coordinates along y-axis
two-element row vector

This property is read-only.

Range of coordinates along the y-axis, specified as a two-element row vector.

ZLimits — Range of coordinates along z-axis
two-element row vector

This property is read-only.

Range of coordinates along the z-axis, specified as a two-element row vector.

GPSTimeLimits — Range of GPS timestamps
1-by-2 duration vector

This property is read-only.

Range of GPS timestamp readings, specified as a 1-by-2 duration vector.

NumReturns — Maximum of all point laser returns
1 (default) | positive integer

This property is read-only.

Maximum of all point laser returns, specified as a positive integer.

NumClasses — Maximum of all point classification values
1 (default) | positive integer

This property is read-only.

Maximum of all point classification values, specified as a positive integer.

Object Functions
readPointCloud Read point cloud data from a LAS or LAZ file

Examples

Read Point Cloud Data from LAZ File

Create a lasFileReader object for a LAZ file. Then, use the readPointCloud function to read
point cloud data from the LAZ file and generate a pointCloud object.

2 Objects

2-156

Create a lasFileReader object to access the LAZ file data.

path = fullfile(toolboxdir('lidar'),'lidardata', ...
 'las','aerialLidarData.laz');
lasReader = lasFileReader(path);

Read point cloud data from the LAZ file using the readPointCloud function.

ptCloud = readPointCloud(lasReader);

Visualize the point cloud.

figure
pcshow(ptCloud.Location)

Visualize Point Cloud Based on Classification Data from LAZ File

Segregate and visualize point cloud data based on classification data from a LAZ file.

Create a lasFileReader object to access data from the LAZ file.

path = fullfile(toolboxdir('lidar'),'lidardata', ...
 'las','aerialLidarData.laz');
lasReader = lasFileReader(path);

 lasFileReader

2-157

Read point cloud data and associated classification point attributes from the LAZ file using the
readPointCloud function.

[ptCloud,pointAttributes] = readPointCloud(lasReader,'Attributes','Classification');

Color the points based on their classification attributes.

colorData = reshape(label2rgb(pointAttributes.Classification),[],3);

Visualize the color-coded point cloud.

figure
pcshow(ptCloud.Location,colorData)

See Also
Functions
pcread | pcshow | readPointCloud

Objects
ibeoLidarReader | pointCloud | velodyneFileReader

Introduced in R2020b

2 Objects

2-158

readPointCloud
Read point cloud data from a LAS or LAZ file

Syntax
ptCloud = readPointCloud(lasReader)
[ptCloud,ptAttributes] = readPointCloud(lasReader,'Attributes',ptAtt)
[___] = readPointCloud(___ ,Name,Value)

Description
ptCloud = readPointCloud(lasReader) reads the point cloud data from the LAS or LAZ file
indicated by the input lasFileReader object and returns it as a pointCloud object, ptCloud.

[ptCloud,ptAttributes] = readPointCloud(lasReader,'Attributes',ptAtt) reads the
specified point attributes, ptAtt, from a LAS or LAZ file. In addition to the point cloud, the function
returns a structure, ptAttributes, containing the specified attributes of each point in the point
cloud.

[___] = readPointCloud(___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to any of the argument combinations in previous syntaxes. For example,
'ROI',[5 10 5 10 5 10] sets the region of interest (ROI) in which the function reads the point
cloud.

Examples

Read Point Cloud Data from LAZ File

Create a lasFileReader object for a LAZ file. Then, use the readPointCloud function to read
point cloud data from the LAZ file and generate a pointCloud object.

Create a lasFileReader object to access the LAZ file data.

path = fullfile(toolboxdir('lidar'),'lidardata', ...
 'las','aerialLidarData.laz');
lasReader = lasFileReader(path);

Read point cloud data from the LAZ file using the readPointCloud function.

ptCloud = readPointCloud(lasReader);

Visualize the point cloud.

figure
pcshow(ptCloud.Location)

 readPointCloud

2-159

Visualize Point Cloud Based on Classification Data from LAZ File

Segregate and visualize point cloud data based on classification data from a LAZ file.

Create a lasFileReader object to access data from the LAZ file.

path = fullfile(toolboxdir('lidar'),'lidardata', ...
 'las','aerialLidarData.laz');
lasReader = lasFileReader(path);

Read point cloud data and associated classification point attributes from the LAZ file using the
readPointCloud function.

[ptCloud,pointAttributes] = readPointCloud(lasReader,'Attributes','Classification');

Color the points based on their classification attributes.

colorData = reshape(label2rgb(pointAttributes.Classification),[],3);

Visualize the color-coded point cloud.

figure
pcshow(ptCloud.Location,colorData)

2 Objects

2-160

Input Arguments
lasReader — LAS or LAZ file reader
lasFileReader object

LAS or LAZ file reader, specified as a lasFileReader object.

ptAtt — Point attributes
[] (default) | character vector | string scalar | cell array of character vectors | vector of strings

Point attributes, specified as a character vector, string scalar, cell array of character vectors, or
vector of strings. The input must contain one or more of these options:

• "Classification"
• "GPSTimeStamp"
• "LaserReturns"
• "NearIR"
• "ScanAngle"

The function returns the specified attributes of each point as the ptAttributes structure, with field
names that correspond to the specified attributes.
Data Types: char | string

 readPointCloud

2-161

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ROI',[5 10 5 10 5 10] sets the region of interest (ROI) in which the function reads
the point cloud.

ROI — ROI to read in the point cloud
[-inf inf -inf inf -inf inf] (default) | six-element row vector

ROI to read in the point cloud, specified as the comma-separated pair consisting of 'ROI' and a six-
element row vector in the order, [xmin xmax ymin ymax zmin zmax]. Each element must be a real number.
The values specify the ROI boundaries in the x-, y-, and z-axis.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

GpsTimeSpan — Range of GPS timestamps
lasReader.GPSTimeLimits (default) | two-element vector of duration objects

Range of GPS timestamps, specified as the comma-separated pair consisting of 'GpsTimeSpan' and
a two-element vector of duration objects, that denotes [startTime endTime]. The timestamps must
be positive.
Data Types: duration

Classification — Classification numbers of interest
0:lasReader.NumClasses - 1 (default) | vector of valid classification numbers

Classification numbers of interest, specified as the comma-separated pair consisting of
'Classification' and a vector of valid classification numbers.

Valid classification numbers range from 0 to 255.

Classification Number Classification Type
0 Created, never classified
1 Unclassified
2 Ground
3 Low vegetation
4 Medium vegetation
5 High vegetation
6 Building
7 Low point (noise)
8 Reserved
9 Water
10 Rail
11 Road surface
12 Reserved

2 Objects

2-162

Classification Number Classification Type
13 Wire guard (shield)
14 Wire conductor (phase)
15 Transmission tower
16 Wire-structure connector (insulator)
17 Bridge deck
18 High noise
19 - 63 Reserved
64 - 255 User-defined

These are standard classes and class-object mappings might differ from the standard classes
depending on the application that created the LAS or LAZ file.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

LaserReturns — Number of points segregated by their return numbers
1:lasReader.NumReturns (default) | vector of valid return numbers

Number of points segregated by their return numbers, specified as the comma-separated pair
consisting of 'LaserReturns' and a vector of valid return numbers. Valid return numbers are
integers from 1 to the value of the NumReturns property of the input lasFileReader object. For
each value, i, in the vector, the function returns a point cloud of only the points that have i as their
return number.

The return number is the number of times a laser pulse reflects back to the sensor.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object.

ptAttributes — Point attributes data
structure

Point attributes data, returned as a structure of fields that correspond to point attributes. The ptAtt
input specifies the fields for this structure. The structure contains data for the specified attributes of
each point in the ptCloud output.
Data Types: struct

See Also
Functions
pcread | pcshow

Objects
ibeoLidarReader | lasFileReader | pointCloud | velodyneFileReader

 readPointCloud

2-163

Introduced in R2020b

2 Objects

2-164

lidarScan
Create object for storing 2-D lidar scan

Description
A lidarScan object contains data for a single 2-D lidar (light detection and ranging) scan. The lidar
scan is a laser scan for a 2-D plane with distances (Ranges) measured from the sensor to obstacles in
the environment at specific angles (Angles). Use this laser scan object as an input to other robotics
algorithms such as matchScans, controllerVFH, or monteCarloLocalization.

Creation

Syntax
scan = lidarScan(ranges,angles)
scan = lidarScan(cart)

Description

scan = lidarScan(ranges,angles) creates a lidarScan object from the ranges and angles,
that represent the data collected from a lidar sensor. The ranges and angles inputs are vectors of
the same length and are set directly to the Ranges and Angles properties.

scan = lidarScan(cart) creates a lidarScan object using the input Cartesian coordinates as an
n-by-2 matrix. The Cartesian property is set directly from this input.

scan = lidarScan(scanMsg) creates a lidarScan object from a LaserScan ROS message
object.

Properties
Ranges — Range readings from lidar
vector

Range readings from lidar, specified as a vector. This vector is the same length as Angles, and the
vector elements are measured in meters.
Data Types: single | double

Angles — Angle of readings from lidar
vector

Angle of range readings from lidar, specified as a vector. This vector is the same length as Ranges,
and the vector elements are measured in radians. Angles are measured counter-clockwise around the
positive z-axis.
Data Types: single | double

 lidarScan

2-165

Cartesian — Cartesian coordinates of lidar readings
[x y] matrix

Cartesian coordinates of lidar readings, returned as an [x y] matrix. In the lidar coordinate frame,
positive x is forward and positive y is to the left.
Data Types: single | double

Count — Number of lidar readings
scalar

Number of lidar readings, returned as a scalar. This scalar is also equal to the length of the Ranges
and Angles vectors or the number of rows in Cartesian.
Data Types: double

Object Functions
plot Display laser or lidar scan readings
removeInvalidData Remove invalid range and angle data

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

2 Objects

2-166

Match Lidar Scans

Create a reference lidar scan using lidarScan. Specify ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Using the transformScan (Robotics System Toolbox) function, generate a second lidar scan at an
x,y offset of (0.5,0.2).

currScan = transformScan(refScan,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between them.

pose = matchScans(currScan,refScan);

Use the transformScan function to align the scans by transforming the second scan into the frame
of the first scan using the relative pose difference. Plot both the original scans and the aligned scans.

currScan2 = transformScan(currScan,pose);
subplot(2,1,1);
hold on
plot(currScan)
plot(refScan)

 lidarScan

2-167

title('Original Scans')
hold off
subplot(2,1,2);
hold on
plot(currScan2)
plot(refScan)
title('Aligned Scans')
xlim([0 5])
hold off

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Lidar scans require a limited size in code generation. The lidar scans are limited to 4000 points
(range and angles) as a maximum.

See Also
matchScans

2 Objects

2-168

Introduced in R2020b

 lidarScan

2-169

plot
Display laser or lidar scan readings

Syntax
plot(scanObj)
plot(___ ,Name,Value)
linehandle = plot(___)

Description
plot(scanObj) plots the lidar scan readings specified in scanObj.

plot(___ ,Name,Value) provides additional options specified by one or more Name,Value pair
arguments.

linehandle = plot(___) returns a column vector of line series handles, using any of the
arguments from previous syntaxes. Use linehandle to modify properties of the line series after it is
created.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

2 Objects

2-170

Input Arguments
scanObj — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "MaximumRange",5

Parent — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of "Parent" and an axes object in
which the laser scan is drawn. By default, the laser scan is plotted in the currently active axes.

MaximumRange — Range of laser scan
scan.RangeMax (default) | scalar

Range of laser scan, specified as the comma-separated pair consisting of "MaximumRange" and a
scalar. When you specify this name-value pair argument, the minimum and maximum x-axis and the

 plot

2-171

maximum y-axis limits are set based on specified value. The minimum y-axis limit is automatically
determined by the opening angle of the laser scanner.

This name-value pair only works when you input scanMsg as the laser scan.

Outputs
linehandle — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or a vector. These are unique identifiers, which
you can use to query and modify properties of a specific chart line.

See Also
matchScans

Introduced in R2020b

2 Objects

2-172

removeInvalidData
Remove invalid range and angle data

Syntax
validScan = removeInvalidData(scan)
validScan = removeInvalidData(scan,Name,Value)

Description
validScan = removeInvalidData(scan)returns a new lidarScan object with all Inf and NaN
values from the input scan removed. The corresponding angle readings are also removed.

validScan = removeInvalidData(scan,Name,Value)provides additional options specified by
one or more Name,Value pairs.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)

Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

 removeInvalidData

2-173

Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ["RangeLimits",[0.05 2]

RangeLimits — Range reading limits
two-element vector

Range reading limits, specified as a two-element vector, [minRange maxRange], in meters. All
range readings and corresponding angles outside these range limits are removed
Data Types: single | double

AngleLimits — Angle limits
two-element vector

2 Objects

2-174

Angle limits, specified as a two-element vector, [minAngle maxAngle] in radians. All angles and
corresponding range readings outside these angle limits are removed.

Angles are measured counter-clockwise around the positivez-axis.
Data Types: single | double

Output Arguments
validScan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object. All invalid lidar scan readings are removed.

See Also
matchScans

Introduced in R2020b

 removeInvalidData

2-175

rangeSensor
Simulate range-bearing sensor readings

Description
The rangeSensor System object™ is a range-bearing sensor that is capable of outputting range and
angle measurements based on the given sensor pose and occupancy map. The range-bearing readings
are based on the obstacles in the occupancy map.

To simulate a range-bearing sensor using this object:

1 Create the rangeSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
rbsensor = rangeSensor
rbsensor = rangeSensor(Name,Value)

Description

rbsensor = rangeSensor returns a rangeSensor System object, rbsensor. The sensor is
capable of outputting range and angle measurements based on the sensor pose and an occupancy
map.

rbsensor = rangeSensor(Name,Value) sets properties for the sensor using one or more name-
value pairs. Unspecified properties have default values. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Range — Minimum and maximum detectable range
[0 20] (default) | 1-by-2 positive real-valued vector

The minimum and maximum detectable range, specified as a 1-by-2 positive real-valued vector. Units
are in meters.

2 Objects

2-176

Example: [1 15]

Tunable: Yes
Data Types: single | double

HorizontalAngle — Minimum and maximum horizontal detection angle
[-pi pi] (default) | 1-by-2 real-valued vector

Minimum and maximum horizontal detection angle, specified as a 1-by-2 real-valued vector. Units are
in radians.
Example: [-pi/3 pi/3]
Data Types: single | double

HorizontalAngleResolution — Resolution of horizontal angle readings
0.0244 (default) | positive scalar

Resolution of horizontal angle readings, specified as a positive scalar. The resolution defines the
angular interval between two consecutive sensor readings. Units are in radians.
Example: 0.01
Data Types: single | double

RangeNoise — Standard deviation of range noise
0 (default) | positive scalar

The standard deviation of range noise, specified as a positive scalar. The range noise is modeled as a
zero-mean white noise process with the specified standard deviation. Units are in meters.
Example: 0.01

Tunable: Yes
Data Types: single | double

HorizontalAngleNoise — Standard deviation of horizontal angle noise
0 (default) | positive scalar

The standard deviation of horizontal angle noise, specified as a positive scalar. The range noise is
modeled as a zero-mean white noise process with the specified standard deviation. Units are in
radians.
Example: 0.01

Tunable: Yes
Data Types: single | double

NumReadings — Number of output readings
258 (default) | positive integer

This property is read-only.

Number of output readings for each pose of the sensor, specified as a positive integer. This property
depends on the HorizonalAngle and HorizontalAngleResolution properties.
Data Types: single | double

 rangeSensor

2-177

Usage

Syntax
[ranges,angles] = rbsensor(pose,map)

Description

[ranges,angles] = rbsensor(pose,map) returns the range and angle readings from the 2-D
pose information and the ground-truth map.

Input Arguments

pose — Pose of sensor in map
N-by-3 real-valued matrix

Poses of the sensor in the 2-D map, specified as an N-by-3 real-valued matrix, where N is the number
of poses to simulate the sensor. Each row of the matrix corresponds to a pose of the sensor in the
order of [x, y, θ]. x and y represent the position of the sensor in the map frame. The units of x and y
are in meters. θ is the heading angle of the sensor with respect to the positive x-direction of the map
frame. The units of θ are in radians.

map — Ground-truth map
occupancyMap object | binaryOccupancyMap object

Ground-truth map, specified as an occupancyMap or a binaryOccupancyMap object. For the
occupancyMap input, the range-bearing sensor considers a cell as occupied and returns a range
reading if the occupancy probability of the cell is greater than the value specified by the
OccupiedThreshold property of the occupancy map.

Output Arguments

ranges — Range readings
R-by-N real-valued matrix

Range readings, specified as an R-by-N real-valued matrix. N is the number of poses for which the
sensor is simulated, and R is the number of sensor readings per pose of the sensor. R is same as the
value of the NumReadings property.

angles — Angle readings
R-by-1 real-valued vector

Angle readings, specified as an R-by-1 real-valued vector. R is the number of sensor readings per pose
of the sensor. R is same as the value of the NumReadings property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

2 Objects

2-178

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object

Examples

Obtain Range and Bearing Readings

Create a range-bearing sensor.

rbsensor = rangeSensor;

Specify the pose of the sensor and the ground-truth map.

truePose = [0 0 pi/4];
trueMap = binaryOccupancyMap(eye(10));

Generate the sensor readings.

[ranges, angles] = rbsensor(truePose, trueMap);

Visualize the results using lidarScan.

scan = lidarScan(ranges, angles);
figure
plot(scan)

 rangeSensor

2-179

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
binaryOccupancyMap | lidarScan | occupancyMap

Introduced in R2020b

2 Objects

2-180

lidar.labeler.loading.CustomPointCloudSource
class
Package: lidar.labeler.loading lidar.labeler.loading lidar.labeler.loading
lidar.labeler.loading lidar.labeler.loading
Superclasses: vision.labeler.loading.MultiSignalSource

Load point cloud data from custom sources into Lidar Labeler app

Description
The lidar.labeler.loading.CustomPointCloudSource class creates an interface for loading
point cloud data from a custom source into the Lidar Labeler app. This class controls the parameters
in the Select Point Cloud dialog box of the app when you set Source Type to Custom Point Cloud.

To access this dialog box, in the app, select Import > Add Point Cloud.

The lidar.labeler.loading.CustomPointCloudSource class is a handle class.

Creation
To create a CustomPointCloudSource object, write a custom reader function to read point cloud
data from the data source. Save the file to any folder on the MATLAB path. Alternatively, add the
folder containing the file to the MATLAB path. Then, use the
lidar.labeler.loading.CustomPointCloudSource function.

Syntax
customptCloudSource = lidar.labeler.loading.CustomPointCloudSource

 lidar.labeler.loading.CustomPointCloudSource class

2-181

Description

customptCloudSource = lidar.labeler.loading.CustomPointCloudSource creates a
CustomPointCloudSource object for loading a signal from custom source. To specify the data
source and the parameters required to load the source, use the loadSource method.

Properties
Name — Name of source type
"Custom Point Cloud" (default) | string scalar

Name of the type of source that this class loads, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

Description — Description of class functionality
"A custom point cloud source reader" (default) | string scalar

Description of the functionality that this class provides, specified as a string scalar.

Attributes:

GetAccess public
Constant true
NonCopyable true

SourceName — Name of data source
[] (default) | string scalar

Name of the data source, specified as a string scalar. Typically, SourceName is the name of the file
from which the signal is loaded.

Attributes:

GetAccess public
SetAccess protected

SourceParams — Parameters for loading point cloud data from a custom source
[] (default) | structure

Parameters for loading point cloud data from a custom source, specified as a structure.

This table describes the required and optional fields of the SourceParams structure.

2 Objects

2-182

Field Description Required or Optional
Timestamps Timestamps for the custom

source, specified as a cell array
containing a single duration
vector of timestamps.

In the Select Point Cloud dialog
box of the app, you can import
the Timestamps parameter
from a variable in the MATLAB
workspace. The SourceParams
property stores these
timestamps in the Timestamps
field.

Optional

Attributes:

GetAccess public
SetAccess protected

SignalName — Names of signals in data source
[] (default) | string vector

Names of the signals that can be loaded from the data source, specified as a string vector.
Attributes:

GetAccess public
SetAccess protected

SignalType — Types of signals in data source
[] (default) | vector of vision.labeler.loading.SignalType enumerations

Types of the signals that can be loaded from the data source, specified as a vector of
vision.labeler.loading.SignalType enumerations. Each signal listed in the SignalName
property is of the type in the corresponding position of SignalType.
Attributes:

GetAccess public
SetAccess protected

Timestamp — Timestamps of signals in data source
[] (default) | cell array of duration vectors

Timestamps of the signals that can be loaded from the data source, specified as a cell array of
duration vectors. Each signal listed in the SignalName property has the timestamps in the
corresponding position of Timestamp.
Attributes:

GetAccess public
SetAccess protected

NumSignals — Number of signals in data source
0 (default) | integer

 lidar.labeler.loading.CustomPointCloudSource class

2-183

Number of signals that can be read from the data source, specified as a nonnegative integer.
NumSignals is equal to the number of signals in the SignalName property.

Attributes:

GetAccess public
SetAccess public
Dependent true
NonCopyable true

Methods
Public Methods

customizeLoadPanel customizeLoadPanel(sourceObj,panel)

Customize the loading panel for the data source
object. In the loading dialog box of the app, this
method is invoked when you select the data
source type from the Source Type list.

getLoadPanelData [sourceName,sourceParams] = getLoadPanelData(sourceObj)

Obtain the data needed to load the data source
object currently selected in the loading panel. In
the loading dialog box of the app, this method is
invoked when you add a source. The method
returns these outputs.

• sourceName is a string capturing the name of
the data source object.

• sourceParams is a structure with fields
containing the parameters required to load
the data source object.

Both of these outputs are passed to the
loadSource method.

loadSource loadSource(sourceObj,sourceName,sourceParams)

Load a data source object into the app. In the
loading dialog box of the app, this method is
invoked after you add a source and the
getLoadPanelData method executes
successfully. This method is also invoked when
you load the data source object into the MATLAB
workspace. When you load the data source
object, MATLAB expects that the source has the
name sourceName and parameters
sourceParams that are needed to load that
source and read data from it.

2 Objects

2-184

readFrame frame = readFrame(sourceObj,signalName,tsIndex)

Read a frame of data from a signal contained in a
data source object at the specified timestamp
index. The index must be in the bounds of the
length of the timestamps for that signal.

See Also
Apps
Lidar Labeler

Classes
lidar.labeler.loading.LasFileSequenceSource |
lidar.labeler.loading.RosbagSource |
vision.labeler.loading.PointCloudSequenceSource |
vision.labeler.loading.VelodyneLidarSource

Topics
“Use Custom Point Cloud Source Reader for Labeling”

Introduced in R2021a

 lidar.labeler.loading.CustomPointCloudSource class

2-185

Functions

3

extractEigenFeatures
Extract eigenvalue-based features from point cloud segments

Syntax
features = extractEigenFeatures(ptCloud,labels)
features = extractEigenFeatures(segmentsIn)
[features,segmentsOut] = extractEigenFeatures(___)

Description
features = extractEigenFeatures(ptCloud,labels) extracts eigenvalue-based features
from a point cloud using labels, labels, that correspond to the segmented point cloud.

Eigenvalue-based features characterize geometrical features of point cloud segments. These features
can be used in simultaneous localization and mapping (SLAM) applications for loop closure detection
and localization in a target map.

features = extractEigenFeatures(segmentsIn) returns eigenvalue-based features from the
point cloud segments segmentsIn. Use this syntax to facilitate the selection of specific segments in a
point cloud scan for local feature extraction.

[features,segmentsOut] = extractEigenFeatures(___) additionally returns the segments
extracted from the input point cloud using any combination of arguments from previous syntaxes. Use
this syntax to facilitate visualization of the segments.

Examples

Extract Eigenvalue-Based Features from Point Cloud

Load an organized lidar point cloud.

ld = load('drivingLidarPoints.mat');
ptCloud = ld.ptCloud;

Segment and remove the ground plane.

groundPtsIdx = segmentGroundFromLidarData(ptCloud,'ElevationAngleDelta',15);
ptCloud = select(ptCloud,~groundPtsIdx,'OutputSize','full');

Cluster the remaining points with a minimum of 50 points per cluster.

distThreshold = 0.5; % in meters
minPoints = 50;
[labels,numClusters] = segmentLidarData(ptCloud,distThreshold,'NumClusterPoints',minPoints);

Extract the eigenvalue-based features and the corresponding segments from the point cloud.

[features,segments] = extractEigenFeatures(ptCloud,labels)

3 Functions

3-2

features=17×1 object
 16x1 eigenFeature array with properties:

 Feature
 Centroid
 ⋮

segments=17×1 object
 16x1 pointCloud array with properties:

 Location
 Count
 XLimits
 YLimits
 ZLimits
 Color
 Normal
 Intensity
 ⋮

Match Eigenvalue-Based Features Between Point Clouds

Create a Velodyne PCAP file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

Read the first and fourth scans from the file.

ptCloud1 = readFrame(veloReader,1);
ptCloud2 = readFrame(veloReader,4);

Remove the ground plane from the scans.

maxDistance = 1; % in meters
referenceVector = [0 0 1];
[~,~,selectIdx] = pcfitplane(ptCloud1,maxDistance,referenceVector);
ptCloud1 = select(ptCloud1,selectIdx,'OutputSize','full');
[~,~,selectIdx] = pcfitplane(ptCloud2,maxDistance,referenceVector);
ptCloud2 = select(ptCloud2,selectIdx,'OutputSize','full');

Cluster the point clouds with a minimum of 10 points per cluster.

minDistance = 2; % in meters
minPoints = 10;
labels1 = pcsegdist(ptCloud1,minDistance,'NumClusterPoints',minPoints);
labels2 = pcsegdist(ptCloud2,minDistance,'NumClusterPoints',minPoints);

Extract eigen-value features and the corresponding segments from each point cloud.

[eigFeatures1,segments1] = extractEigenFeatures(ptCloud1,labels1);
[eigFeatures2,segments2] = extractEigenFeatures(ptCloud2,labels2);

Create matrices of the features and centroids extracted from each point cloud, for matching.

 extractEigenFeatures

3-3

features1 = vertcat(eigFeatures1.Feature);
features2 = vertcat(eigFeatures2.Feature);
centroids1 = vertcat(eigFeatures1.Centroid);
centroids2 = vertcat(eigFeatures2.Centroid);

Find putative feature matches.

indexPairs = pcmatchfeatures(features1,features2, ...
 pointCloud(centroids1),pointCloud(centroids2));

Get the matched segments and features for visualization.

matchedSegments1 = segments1(indexPairs(:,1));
matchedSegments2 = segments2(indexPairs(:,2));
matchedFeatures1 = eigFeatures1(indexPairs(:,1));
matchedFeatures2 = eigFeatures2(indexPairs(:,2));

Visualize the matches.

figure
pcshowMatchedFeatures(matchedSegments1,matchedSegments2,matchedFeatures1,matchedFeatures2)
title('Matched Segments')

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

labels — Cluster labels
M-element vector of numeric values | M-by-N matrix of numeric values

Cluster labels, specified as an M-element vector of numeric values for unorganized point clouds or an
M-by-N matrix of numeric values for organized point clouds. The labels correspond to the results of
segmenting the input point cloud. Each point in the point cloud has a cluster label, specified by the
corresponding element in labels.

You can use the pcsegdist or the segmentLidarData function to return labels.

segmentsIn — Point cloud segments
vector of pointCloud objects

Point cloud segments, specified as a vector of pointCloud objects. Each point cloud segment in the
input must have a minimum of two points for feature extraction. No features or segments are
returned for input segments with only one point.

Output Arguments
features — Eigenvalue-based features
vector of eigenFeature objects

Eigenvalue-based features, returned as a vector of eigenFeature objects. When you extract
features from a labeled point cloud input, each element in this vector contains the features extracted

3 Functions

3-4

from the corresponding cluster of labeled points. When you extract features from a segments input,
each element in this vector contains the features extracted from the corresponding element in the
segments vector.

segmentsOut — Segments extracted from point cloud
vector of pointCloud objects

Segments extracted from the point cloud, specified as a vector of pointCloud objects. The length of
the segments vector corresponds to the number of nonzero, unique labels.

References
[1] Weinmann, M., B. Jutzi, and C. Mallet. “Semantic 3D Scene Interpretation: A Framework

Combining Optimal Neighborhood Size Selection with Relevant Features.” ISPRS Annals of
Photogrammetry, Remote Sensing and Spatial Information Sciences II–3 (August 7, 2014):
181–88. https://doi.org/10.5194/isprsannals-II-3-181-2014.

See Also
Functions
extractFPFHFeatures | pcmatchfeatures | pcsegdist | pcshowMatchedFeatures |
scanContextDescriptor | segmentLidarData

Objects
eigenFeature | pcmapsegmatch | pointCloud

Topics
“Build Map and Localize Using Segment Matching”
“Point Cloud SLAM Overview”

Introduced in R2021a

 extractEigenFeatures

3-5

pcfitcuboid
Fit cuboid over point cloud

Syntax
model = pcfitcuboid(ptCloudIn)
model = pcfitcuboid(ptCloudIn,indices)
model = pcfitcuboid(___ ,Name,Value)

Description
model = pcfitcuboid(ptCloudIn) fits a cuboid over the input point cloud data. The function
stores the properties of the cuboid in the cuboidModel object, model.

model = pcfitcuboid(ptCloudIn,indices) fits a cuboid over a selected set of points,
indices, in the input point cloud.

model = pcfitcuboid(___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any of the input argument combinations in previous syntaxes. For example,
'AzimuthRange',[25 75] sets the angular range for the azimuth angles of the function.

Examples

Fit Cuboid Over Point Cloud Data

Fit cuboid bounding boxes around clusters in a point cloud.

Load the point cloud data into the workspace.

data = load('drivingLidarPoints.mat');

Define and crop a region of interest (ROI) from the point cloud. Visualize the selected ROI of the point
cloud.

roi = [-40 40 -6 9 -2 1];
in = findPointsInROI(data.ptCloud,roi);
ptCloudIn = select(data.ptCloud,in);
hcluster = figure;
panel = uipanel('Parent',hcluster,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshow(ptCloudIn,'MarkerSize',30,'Parent',ax)
title('Input Point Cloud')

3 Functions

3-6

Segment the ground plane. Visualize the segmented ground plane.

maxDistance = 0.3;
referenceVector = [0 0 1];
[~,inliers,outliers] = pcfitplane(ptCloudIn,maxDistance,referenceVector);
ptCloudWithoutGround = select(ptCloudIn,outliers,'OutputSize','full');
hSegment = figure;
panel = uipanel('Parent',hSegment,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshowpair(ptCloudIn,ptCloudWithoutGround,'Parent',ax)
legend('Ground Region','Non-Ground Region','TextColor', [1 1 1])
title('Segmented Ground Plane')

 pcfitcuboid

3-7

Segment the non-ground region of the point cloud into clusters. Visualize the segmented point cloud.

distThreshold = 1;
[labels,numClusters] = pcsegdist(ptCloudWithoutGround,distThreshold);
labelColorIndex = labels;
hCuboid = figure;
panel = uipanel('Parent',hCuboid,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshow(ptCloudIn.Location,labelColorIndex,'Parent',ax)
title('Fitting Bounding Boxes')
hold on

Fit bounding box on each cluster, visualized as orange highlights.

for i = 1:numClusters
 idx = find(labels == i);
 model = pcfitcuboid(ptCloudWithoutGround,idx);
 plot(model)
end

3 Functions

3-8

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

indices — Indices of selected valid points
vector of positive integers

Indices of selected valid points, specified as a vector of positive integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'AzimuthRange',[25 75] sets the angular range for the azimuth angles of the function.

AzimuthRange — Range of azimuth angles
[0 90] (default) | two-element row vector of real values

 pcfitcuboid

3-9

Range of azimuth angles over which to identify the orientation of the cuboid, specified as the comma-
separated pair consisting of 'AzimuthRange' and a two-element row vector of real values in the
range [0, 90].
Data Types: single | double

Resolution — Step size of search window
1 (default) | positive scalar

Step size of search window, specified as the comma-separated pair consisting of 'Resolution' and
a positive scalar. The specified value must be less than or equal to the distance between the upper
and lower bounds of the range of azimuth angles. For example, if the range of azimuth angles is [0,
90], the specified value must be less than or equal to 90.

Note Decreasing the resolution will increase the computation time and memory footprint.

Data Types: single | double

Output Arguments
model — Cuboid model
cuboidModel object

Cuboid model, returned as a cuboidModel object.

References
[1] Xiao Zhang, Wenda Xu, Chiyu Dong and John M. Dolan, "Efficient L-Shape Fitting for Vehicle

Detection Using Laser Scanners", IEEE Intelligent Vehicles Symposium, June 2018

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
pcfitcylinder | pcfitplane | pcfitsphere

Objects
cuboidModel | pointCloud

Introduced in R2020b

3 Functions

3-10

extractFPFHFeatures
Extract fast point feature histogram (FPFH) descriptors from point cloud

Syntax
features = extractFPFHFeatures(ptCloudIn)
features = extractFPFHFeatures(ptCloudIn,indices)
features = extractFPFHFeatures(ptCloudIn,row,column)
[___ ,validIndices] = extractFPFHFeatures(___)
[___] = extractFPFHFeatures(___ ,Name,Value)

Description
features = extractFPFHFeatures(ptCloudIn) extracts FPFH descriptors for each valid point
in the input point cloud object. The function returns descriptors as an N-by-33 matrix, where N is the
number of valid points in the input point cloud.

features = extractFPFHFeatures(ptCloudIn,indices) extracts FPFH descriptors for the
valid points located at the specified linear indices, indices.

features = extractFPFHFeatures(ptCloudIn,row,column) extracts FPFH descriptors for
the valid points at the specified 2-D indices of the input organized point cloud ptCloudIn. Specify
the row and column indices of the points as row and column, respectively.

[___ ,validIndices] = extractFPFHFeatures(___) returns the linear indices of valid points
in the point cloud for which FPFH descriptors have been extracted.

[___] = extractFPFHFeatures(___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to any combination of arguments in previous syntaxes.

Descriptors can be extracted using KNN search method, radius search method or a combination of
both. The extractFPFHFeatures function uses KNN search method to extract descriptors by
default. The users can choose the method of extraction through the name-value pair arguments. For
example, 'NumNeighbors',8 selects the KNN search method to extract descriptors and sets
maximum number of neighbors to consider in the k-nearest neighbor (KNN) search method to eight.

Examples

Extract FPFH Descriptors at Selected Indices in Point Cloud

Load point cloud data into the workspace.

ptObj = pcread('teapot.ply');

Downsample the point cloud data.

ptCloudIn = pcdownsample(ptObj,'gridAverage',0.05);

Extract FPFH descriptors for the points at specified key indices.

 extractFPFHFeatures

3-11

keyInds = [6565 10000];
features = extractFPFHFeatures(ptCloudIn,keyInds);

Display the key points on the point cloud.

ptKeyObj = pointCloud(ptCloudIn.Location(keyInds,:),'Color',[255 0 0;0 0 255]);
figure
pcshow(ptObj)
title('Selected Indices on Point Cloud')
hold on
pcshow(ptKeyObj,'MarkerSize',1000)
hold off

Display the extracted FPFH descriptors at key points.

figure
ax1 = subplot(2,1,1);
bar(features(1,:),'FaceColor',[1 0 0])
title('FPFH Descriptors of Selected Indices')
ax2 = subplot(2,1,2);
bar(features(2,:),'FaceColor',[0 0 1])
linkaxes([ax1 ax2],'xy')

3 Functions

3-12

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

indices — Linear indices of selected points
vector of positive integers

Linear indices of selected points, specified as a vector of positive integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

row — Row indices of selected points
vector of positive integers

Row indices of selected points in an organized point cloud, specified as a vector of positive integers.

The row and column vectors must be of the same length.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

column — Column indices of selected points
vector of positive integers

 extractFPFHFeatures

3-13

Column indices of selected points in an organized point cloud, specified as a vector of positive
integers.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumNeighbors',8 sets the maximum number of neighbors to consider in the k-nearest
neighbor (KNN) search method to eight.

NumNeighbors — Number of neighbors for KNN search
50 (default) | positive integer

Number of neighbors for the KNN search method, specified as the comma-separated pair consisting
of 'NumNeighbors' and a positive integer.

KNN search method calculates the distance between a point and its adjacent points in a point cloud
and sorts them in ascending order. Closest points are considered as neighbors. 'NumNeighbors'
sets the upper limit for the number of neighbors to consider.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Radius — Radius considered for radius search
0.05 (default) | positive real-valued scalar

Radius considered for radius search method, specified as the comma-separated pair consisting of
'Radius' and a positive real-valued scalar.

Radius search method sets a particular radius around a point and selects all the adjacent points
within that given radius as neighbors.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Note If you specify values for both the 'NumNeighbors' and 'Radius' name-value pair
arguments, the extractFPFHFeatures function performs the KNN search method, and then selects
only those of that set within the given radius.

If you specify large values for 'NumNeighbors' and 'Radius', the memory footprint and
computation time increase.

Output Arguments
features — FPFH descriptors
N-by-33 matrix of positive real values

FPFH descriptors, returned as a N-by-33 matrix of positive real values. N is the number of valid
points from which the function extracts FPFH descriptors. Each column contains the FPFH
descriptors for a valid point in the point cloud. To additionally return the indices of the extracted
points, use the validIndices output argument.
Data Types: double

3 Functions

3-14

validIndices — Linear indices of valid points
vector of positive integers

Linear indices of valid points, specified as a vector of positive integers. The vector contains the
indices of only those points for which the function extracts features.
Data Types: double

References
[1] Rusu, Radu Bogdan, Nico Blodow, and Michael Beetz. "Fast point feature histograms (FPFH) for

3D registration." In 2009 IEEE International Conference on Robotics and Automation, pp.
3212-3217. IEEE, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
pcdownsample | pcnormals | pcread | pcshow

Objects
pointCloud

Introduced in R2020b

 extractFPFHFeatures

3-15

pcmedian
Median filtering 3-D point cloud data

Syntax
ptCloudOut = pcmedian(ptCloudIn)
ptCloudOut = pcmedian(___ ,Name,Value)

Description
ptCloudOut = pcmedian(ptCloudIn) performs median filtering of 3-D point cloud data. The
function filters each channel of the point cloud individually. The output is a filtered point cloud. Each
output location property value is the median of neighborhood around the corresponding input
location property value. The pcmedian function doesn't pad zeros on the edges. Rather, it operates
only on the available neighborhood values.

If the input point cloud is an organized point cloud, the pcmedian function uses N-by-N
neighborhood method. If the point cloud is unorganized, the function uses radial neighborhood
method.

ptCloudOut = pcmedian(___ ,Name,Value) specifies options using one or more name-value
pair arguments. For example, 'FilterSize',3 sets the size of the median filter for organized point
clouds to 3.

Examples

Median Filter Noisy Point Cloud

Use the median filter to remove noise from a point cloud. First, add random noise to a point cloud.
Then, use the pcmedian function to filter the noise.

Create a point cloud.

gv = 0:0.01:1;
[X,Y] = meshgrid(gv,gv);
Z = X.^2 + Y.^2;
ptCloud = pointCloud(cat(3,X,Y,Z));

Add random noise along the z-axis.

temp = ptCloud.Location;
count = numel(temp(:,:,3));
temp((2*count) + randperm(count,100)) = rand(1,100);
temp(count + randperm(count,100)) = rand(1,100);
temp(randperm(count,100)) = rand(1,100);
ptCloudA = pointCloud(temp);

Apply the median filter and display the three point clouds (original, noisy, and filtered).

ptCloudB = pcmedian(ptCloudA);

3 Functions

3-16

subplot(1,3,1)
pcshow(ptCloud)
title('Original Data')
subplot(1,3,2)
pcshow(ptCloudA)
title('Noisy Data')
subplot(1,3,3)
pcshow(ptCloudB)
title('Filtered Data')

Apply Median Filter on Unorganized Point Cloud Data

Load point cloud data into the workspace.

ptCloud = pcread('highwayScene.pcd');
roi = [0 20 0 20 -5 15];
indices = findPointsInROI(ptCloud,roi);
ptCloud = select(ptCloud,indices);
ptCloud = pcdownsample(ptCloud,'gridAverage',0.2);

Display the point cloud data. Each point is color-coded based on its x-coordinate.

figure
pcshow(ptCloud.Location,ptCloud.Location(:,1))
view(-90,2)
title('Original Point Cloud')

 pcmedian

3-17

Add noise along z-channel in the interval (a,b). Values of a and b are chosen to make the noise appear
close to the ground.

temp = ptCloud.Location;
count = numel(temp(:,3));
a = -2.5;
b = -2;
temp((2*count)+randperm(count,200)) = a+(b-a).*rand(1,200);
ptCloudA = pointCloud(temp);

Display the noisy point cloud. Each point is color-coded based on its x-coordinate.

figure
pcshow(ptCloudA.Location,ptCloudA.Location(:,1))
view(-90,2)
title('Noisy Point Cloud')

3 Functions

3-18

Apply median filter on the point cloud.

ptCloudB = pcmedian(ptCloudA,'Dimensions',3,'Radius',1);

Display the filtered point cloud. Each point is color-coded based on its x-coordinate.

figure
pcshow(ptCloudB.Location, ptCloudB.Location(:,1))
view(-90,2)
title('Filtered Point Cloud')

 pcmedian

3-19

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object with at least one valid point. If the input point cloud is
organized, the size of the point cloud must be at least 3-by-3-by-3.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'FilterSize',3 specifies a median filter size of 3.

Dimensions — Point cloud dimensions of interest
[1 2 3] (default) | vector of integers in the range [1 3]

Point cloud dimensions of interest, specified as a vector of integers in the range [1 3]. The values 1, 2,
and 3 correspond to the x-, y-, and z-axis respectively. You must specify dimensions in ascending
order.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

3 Functions

3-20

FilterSize — Size of the median filter for organized point cloud
3 (default) | odd integer in the range [3, N]

Size of the median filter for an organized point cloud, specified as an odd integer in the range [3, N].
N is the smallest of channel dimensions in the point cloud.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Radius — Radius of neighborhood for unorganized point cloud
0.05 (default) | positive scalar

Radius of the neighborhood for unorganized point cloud, specified as a positive scalar.
Data Types: single | double

Output Arguments
ptCloudOut — Filtered point cloud
pointCloud object

Filtered point cloud, returned as a pointCloud object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
pcdenoise | pcdownsample | pcmerge | pcshow | pctransform

Objects
pointCloud

Introduced in R2020b

 pcmedian

3-21

estimateCheckerboardCorners3d
Estimate world frame coordinates of checkerboard corner points in image

Syntax
imageCorners3d = estimateCheckerboardCorners3d(I,cameraIntrinsic,checkerSize)
[imageCorners3d,boardDimensions] = estimateCheckerboardCorners3d(I,
cameraIntrinsic,checkerSize)
[imageCorners3d,boardDimensions,imagesUsed] = estimateCheckerboardCorners3d(
imageFileNames,cameraIntrinsic,checkerSize)
[___] = estimateCheckerboardCorners3d(imageArray,cameraIntrinsic,checkerSize)
[___] = estimateCheckerboardCorners3d(___ ,Name,Value)

Description
imageCorners3d = estimateCheckerboardCorners3d(I,cameraIntrinsic,checkerSize)
estimates the world frame coordinates of the corner points of a checkerboard in an image, I, by using
the camera intrinsic parameters cameraIntrinsic and the size of the checkerboard squares
checkerSize.

[imageCorners3d,boardDimensions] = estimateCheckerboardCorners3d(I,
cameraIntrinsic,checkerSize) additionally returns the checkerboard dimensions
boardDimensions.

[imageCorners3d,boardDimensions,imagesUsed] = estimateCheckerboardCorners3d(
imageFileNames,cameraIntrinsic,checkerSize) estimates the world frame coordinates of the
corner points of a checkerboard from a set of image files, imageFileNames. The function returns a
logical vector that indicates in which images it detected a checkerboard, imagesUsed, in addition to
output arguments from previous syntaxes.

[___] = estimateCheckerboardCorners3d(imageArray,cameraIntrinsic,checkerSize)
estimates the world frame coordinates of the corner points of a checkerboard from an array of
images, imageArray.

[___] = estimateCheckerboardCorners3d(___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to any combination of arguments from previous
syntaxes. For example, 'MinCornerMetric',0.2 sets the threshold for the checkerboard corner
metric to 0.2.

Examples

Detect Checkerboard Corners in Image

Detect a checkerboard in an image using the estimateCheckerboardCorners3d function and
estimate the world frame coordinates of the checkerboard corners.

Read the image into the workspace.

Image = imread('CheckerboardImage.png');

3 Functions

3-22

Load the camera parameters into the workspace.

intrinsic = load('calibration.mat');

Set the size of the checkerboard squares in millimeters.

squareSize = 200;

Estimate the checkerboard corners.

boardCorners = estimateCheckerboardCorners3d(Image, ...
 intrinsic.cameraParams,squareSize)

boardCorners = 4×3

 1.2840 -0.5216 8.8913
 2.8614 0.5774 8.3401
 1.8230 2.0470 8.2984
 0.2455 0.9480 8.8496

Plot the corners on the input image.

imPts = projectLidarPointsOnImage(boardCorners,intrinsic.cameraParams,rigid3d());
J = undistortImage(Image,intrinsic.cameraParams);
imshow(J)
hold on
plot(imPts(:,1),imPts(:,2),'.r','MarkerSize',30)
title('Detected Checkerboard Corners')
hold off

 estimateCheckerboardCorners3d

3-23

Input Arguments
I — Image for detection
H-by-W-by-C array

Image for detection, specified as an H-by-W-by-C array where:

• H — Height of the image in pixels
• W — Width of the image in pixels
• C — Number of color channels

Data Types: single | double | int16 | uint8 | uint16

imageFileNames — Image file names
character vector | cell array of character vectors

Image file names, specified as a character vector or cell array of character vectors If specifying more
than one file name, you must use a cell array of character vectors.
Data Types: char | cell

3 Functions

3-24

imageArray — Set of images
H-by-W-by-C-by-N array

Set of images, specified as an H-by-W-by-C-by-N array where:

• H — Height of the tallest image in the array
• W — Width of the widest image in the array
• C — Number of color channels
• N — Number of images in the array

Data Types: single | double | int16 | uint8 | uint16

cameraIntrinsic — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

checkerSize — Size of checkerboard square
scalar

Size of a checkerboard square, specified as a scalar in millimeters. This value specifies the length of
each side of a checkerboard square.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MinCornerMetric',0.2 sets the threshold for the checkerboard corner metric to 0.2.

Padding — Padding along each side of checkerboard
[0 0 0 0] (default) | four-element row vector

Padding along each side of checkerboard, specified as the comma-separated pair consisting of
'Padding' and a four-element row vector of nonnegative values in millimeters.

The figure shows how the elements of the vector pad the sides.

 estimateCheckerboardCorners3d

3-25

Checkerboard Padding
Data Types: single | double

MinCornerMetric — Threshold for checkerboard corner metric
0.15 (default) | nonnegative scalar

Threshold for the checkerboard corner metric, specified as the comma-separated pair consisting of
'MinCornerMetric' and a nonnegative scalar. Using a higher threshold value can reduce the
number of false detections in a noisy or highly textured image.
Data Types: single | double

ShowProgressBar — Display function progress
false (default) | true

Display function progress in a progress bar, specified as the comma-separated pair consisting of
'ShowProgressBar' and a logical false or true.
Data Types: logical

Output Arguments
imageCorners3d — Estimated location of checkerboard corners
4-by-3 matrix | 4-by-3-by-P array

Estimated location of checkerboard corners, returned as a 4-by-3 matrix or 4-by-3-by-P array. For one
image, the function returns the 3-D world frame coordinates of the four checkerboard corners. Each
row represents the x-, y- , z-axis coordinates of a corner point in meters. For multiple images, the
coordinates are returned as a 4-by-3-by-P array, where P is the number of images in which a
checkerboard was detected.

boardDimensions — Checkerboard dimensions
two-element row vector

Checkerboard dimensions, returned as a two-element row vector. The elements represent the width
and length of the checkerboard respectively, in millimeters. The dimensions of the checkerboard are
expressed in terms of the number of squares. The function calculates the dimensions of the
checkerboard by multiplying the size of the checkerboard squares, checkerSize, by the number of
detected squares along a side.

3 Functions

3-26

imagesUsed — Pattern detection flag
N-by-1 logical array

Pattern detection flag, returned as an N-by-1 logical array. N is the number of images in the first
input argument. A value of 1 (true) indicates that the function detected a checkerboard pattern in the
corresponding image. A value of 0 (false) indicates that the function did not detect a checkerboard
pattern in the corresponding image.

See Also
Functions
detectRectangularPlanePoints | estimateLidarCameraTransform

Topics
“Lidar and Camera Calibration”
“Calibration Guidelines and Procedure”
“What Is Lidar Camera Calibration?”

Introduced in R2020b

 estimateCheckerboardCorners3d

3-27

detectRectangularPlanePoints
Detect rectangular plane of specified dimensions in point cloud

Syntax
ptCloudPlanes = detectRectangularPlanePoints(ptCloudIn,planeDimensions)
[ptCloudPlanes,ptCloudUsed] = detectRectangularPlanePoints(ptCloudArray,
planeDimensions)
[___] = detectRectangularPlanePoints(ptCloudFileNames,planeDimensions)
[ptCloudPlanes,ptCloudUsed,indicesCell] = detectRectangularPlanePoints(___)
[___] = detectRectangularPlanePoints(___ ,Name,Value)

Description
ptCloudPlanes = detectRectangularPlanePoints(ptCloudIn,planeDimensions) detects
and extracts a rectangular plane, ptCloudPlanes, of specified dimensions, planeDimensions,
from the input point cloud ptCloudIn.

[ptCloudPlanes,ptCloudUsed] = detectRectangularPlanePoints(ptCloudArray,
planeDimensions) detects rectangular planes from a set of point clouds, ptCloudArray. In
addition, the function returns a logical vector, ptCloudUsed, that indicates the point clouds in which
it detected a rectangular plane.

[___] = detectRectangularPlanePoints(ptCloudFileNames,planeDimensions) detects
rectangular planes from a set of point cloud files, ptCloudFileNames, and returns any combination
of output arguments from previous syntaxes.

[ptCloudPlanes,ptCloudUsed,indicesCell] = detectRectangularPlanePoints(___)
returns indices to the points within the detected rectangular plane in each point cloud, in addition to
any previous combination of arguments.

[___] = detectRectangularPlanePoints(___ ,Name,Value) specifies options using one or
more name-value pair arguments. For example, 'RemoveGround',true sets the 'RemoveGround'
flag to true, which removes the ground plane from the input point cloud before processing.

Examples

Detect Checkerboard Plane in Point Cloud

Load point cloud data into the workspace. Visualize the point cloud.

ptCloud = pcread('pcCheckerboard.pcd');
pcshow(ptCloud)
title('Input Point Cloud')
xlim([-5 10])
ylim([-5 10])

3 Functions

3-28

Set the search dimensions for the rectangular plane.

boardSize = [729 810];

Search for the rectangular plane in the point cloud. Visualize the detected rectangular plane.

lidarCheckerboardPlane = detectRectangularPlanePoints(ptCloud,boardSize, ...
 'RemoveGround',true);
hRect = figure;
panel = uipanel('Parent',hRect,'BackgroundColor',[0 0 0]);
ax = axes('Parent',panel,'Color',[0 0 0]);
pcshow(lidarCheckerboardPlane,'Parent',ax)
title('Rectangular Plane Points')

 detectRectangularPlanePoints

3-29

Visualize the detected rectangular plane on the input point cloud.

figure
pcshowpair(ptCloud,lidarCheckerboardPlane)
title('Detected Rectangular Plane')
xlim([-5 10])
ylim([-5 10])

3 Functions

3-30

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object. The function searches within this point cloud for a
rectangular plane.

ptCloudArray — Point cloud array
array of pointCloud objects

Point cloud array, specified as a P-by-1 array of pointCloud objects. P is the number of pointCloud
objects in the array. The function searches within each point cloud for a rectangular plane.

ptCloudFileNames — Point cloud file names
character vector | cell array of character vectors

Point cloud file names, specified as a character vector or cell array of character vectors. If specifying
multiple file names, you must use a cell array of character vectors.
Data Types: char | cell

planeDimensions — Rectangular plane dimensions
two-element vector

 detectRectangularPlanePoints

3-31

Rectangular plane dimensions, specified as a two-element vector of positive real numbers. The
elements specify the width and length of the rectangular plane respectively, in millimeters. The
function searches the input point cloud for a plane with the same dimensions as planeDimensions.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'RemoveGround',true sets the 'RemoveGround' flag to true, which removes the ground
plane from the input point cloud before processing.

MinDistance — Clustering threshold for two adjacent points
0.5 (default) | positive scalar

Clustering threshold for two adjacent points, specified as the comma-separated pair consisting of
'MinDistance' and a positive scalar in meters. The clustering process is based on the Euclidean
distance between adjacent points. If the distance between two adjacent points is less than the
clustering threshold, both points belong to the same cluster. Low resolution lidars require higher
'MinDistance' threshold and vice-versa.
Data Types: single | double

ROI — Region of interest for detection
vector of form [xmin, xmax, ymin, ymax, zmin, zmax]

Region of interest (ROI) for detection, specified as the comma-separated pair consisting of 'ROI' and
a vector of the form [xmin, xmax, ymin, ymax, zmin, zmax]. The vector specifies the x, y, and z limits
of the ROI as the pairs xmin and xmax, ymin and ymax, zmin and zmax respectively.
Data Types: single | double

DimensionTolerance — Tolerance for uncertainty in rectangular plane dimensions
0.05 (default) | positive scalar in the range [0 1]

Tolerance for uncertainty in the rectangular plane dimensions, specified as the comma-separated pair
consisting of 'DimensionTolerance' and a positive scalar in the range [0 1]. A higher
'DimensionTolerance' indicates a more tolerant range for the rectangular plane dimensions.
Data Types: single | double

RemoveGround — Remove ground plane from point cloud
false or 0 (default) | true or 1

Remove the ground plane from the point cloud, specified as the comma-separated pair consisting of
'RemoveGround' and a logical 0 (false) or 1 (true).

The normal of the plane is assumed to be aligned with the positive direction of the z-axis with the
reference vector [0 0 1].
Data Types: logical

Verbose — Display function progress
false or 0 (default) | true or 1

3 Functions

3-32

Display function progress, specified as the comma-separated pair consisting of 'Verbose' and a
logical 0 (false) or 1 (true).
Data Types: logical

Output Arguments
ptCloudPlanes — Detected rectangular planes
pointCloud object | 1-by-P array of pointCloud objects

Detected rectangular planes, returned as a pointCloud object or 1-by-P array of pointCloud
objects, where P specifies the number of input point clouds in which a rectangular plane was
detected.

ptCloudUsed — Pattern detection flag
1-by-N logical vector

Pattern detection flag, returned as a 1-by-N logical vector. N is the number of input point clouds. A
true value indicates that the function detected a rectangular plane in the corresponding point cloud.
A false value indicates that the function did not detect a rectangular plane.

indicesCell — Indices of detected rectangular planes
1-by-P cell array

Indices of detected rectangular planes, returned as a 1-by-P cell array, where P is the number of input
point clouds in which a rectangular plane was detected. Each cell contains a logical vector that
specifies the indices of the corresponding point cloud at which the function detected a rectangular
plane. The indices can be used to extract the detected plane from the point cloud data.

See Also
Functions
estimateCheckerboardCorners3d | estimateLidarCameraTransform |
projectLidarPointsOnImage

Topics
“Lidar and Camera Calibration”

Introduced in R2020b

 detectRectangularPlanePoints

3-33

estimateLidarCameraTransform
Estimate rigid transformation from lidar sensor to camera

Syntax
tform = estimateLidarCameraTransform(ptCloudPlanes,imageCorners3d)
[tform,errors] = estimateLidarCameraTransform(___)
[___] = estimateLidarCameraTransform(___ ,Name,Value)

Description
tform = estimateLidarCameraTransform(ptCloudPlanes,imageCorners3d) estimates the
transformation between a lidar sensor and a camera using the checkerboard calibration pattern
features extracted from each sensor.

[tform,errors] = estimateLidarCameraTransform(___) returns the inaccuracy in
estimating the transformation matrix errors using the input arguments from the previous syntax.

[___] = estimateLidarCameraTransform(___ ,Name,Value) specifies options using one or
more name-value pair arguments in addition to any combination of arguments in previous syntaxes.
For example, 'Verbose',true sets the function to display progress.

Examples

Estimate Rigid Transform from Lidar to Camera

Estimate the rigid transformation from a lidar sensor to a camera using data captured from the lidar
sensor and camera calibration parameters. Use these three steps:

1 Load the data into the workspace.
2 Extract the required features from images and point cloud data.
3 Estimate the rigid transformation using the extracted features.

Load Data

Load images and point cloud data into the workspace.

imageDataPath = fullfile(toolboxdir('lidar'),'lidardata',...
 'lcc','vlp16','images');
imds = imageDatastore(imageDataPath);
imageFileNames = imds.Files;
ptCloudFilePath = fullfile(toolboxdir('lidar'),'lidardata',...
'lcc','vlp16','pointCloud');
pcds = fileDatastore(ptCloudFilePath,'ReadFcn',@pcread);
pcFileNames = pcds.Files;

Load camera calibration files into the workspace.

cameraIntrinsicFile = fullfile(imageDataPath,'calibration.mat');
intrinsic = load(cameraIntrinsicFile);

3 Functions

3-34

Feature Extraction

Specify the size of the checkerboard squares in millimeters.

squareSize = 81;

Estimate the checkerboard corner coordinates for the images.

[imageCorners3d,planeDimension,imagesUsed] = estimateCheckerboardCorners3d(...
 imageFileNames,intrinsic.cameraParams,squareSize);

Filter the point clouds based on the images used.

pcFileNames = pcFileNames(imagesUsed);

Detect the checkerboard planes in the filtered point clouds using the plane parameters
planeDimension.

[lidarCheckerboardPlanes,framesUsed] = detectRectangularPlanePoints(...
pcFileNames,planeDimension,'RemoveGround',true);

Extract the images, checkerboard corners, and point clouds in which you detected features.

imagFileNames = imageFileNames(imagesUsed);
imageFileNames = imageFileNames(framesUsed);
pcFileNames = pcFileNames(framesUsed);
imageCorners3d = imageCorners3d(:,:,framesUsed);

Estimate Transformation

Estimate the transformation using checkerboard planes from the point clouds and 3-D checkerboard
corner points from the images.

[tform,errors] = estimateLidarCameraTransform(lidarCheckerboardPlanes, ...
imageCorners3d,'CameraIntrinsic',intrinsic.cameraParams);

Display translation, rotation, and reprojection errors as bar graphs.

figure
bar(errors.TranslationError)
xlabel('Frame Number')
title('Translation Error (meters)')

 estimateLidarCameraTransform

3-35

figure
bar(errors.RotationError)
xlabel('Frame Number')
title('Rotation Error (degrees)')

3 Functions

3-36

figure
bar(errors.ReprojectionError)
xlabel('Frame Number')
title('Reprojection Error (pixels)')

 estimateLidarCameraTransform

3-37

Input Arguments
ptCloudPlanes — Segmented checkerboard planes
P-by-1 array of pointCloud objects

Segmented checkerboard planes, specified as a pointCloud object or P-by-1 array of pointCloud
objects. P is the number of point clouds. Each pointCloud object must contain points that represent
a checkerboard (rectangular) plane.

P must be equal for both the ptCloudPlanes and imageCorners3d arguments. This means that
number of point clouds and number of images used for detection must also be equal.

imageCorners3d — 3-D coordinates of checkerboard corners
4-by-3-by-P array

3-D coordinates of the checkerboard corners, specified as a 4-by-3 matrix or 4-by-3-by-P array. P
represents the number of camera images used for detection. Each row of a channel contains the 3-D
coordinates, in the form of [x,y,z], of a checkerboard corner in meters extracted from the
corresponding camera image. P must be equal for both the ptCloudPlanes and imageCorners3d
arguments. This means that number of point clouds and number of images used for detection must
also be equal.
Data Types: single | double

3 Functions

3-38

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Verbose',true sets the function to display progress.

Lidar3DCorners — Checkerboard corners in lidar frame
4-by-3-by-P array

Checkerboard corners in the lidar frame, specified as the comma-separated pair consisting of
'Lidar3DCorners' and a 4-by-3-by-P array where P is the number of point clouds.

If the user specifies the checkerboard corners in the lidar frame, then the function does not calculate
them internally.
Data Types: single | double

InitialTransform — Initial rigid transformation
identity transformation as a rigid3d object (default) | rigid3d object

Initial rigid transformation, specified as the comma-separated pair consisting of
'InitialTransform' and a rigid3d object.

The function assumes the rotation angle between the lidar sensor and the camera is in the range [-45
45] along each axis. For any other range of the rotation angle, use this name-value pair to specify an
initial transformation to improve function accuracy.

CameraIntrinsic — Camera intrinsic parameters
cameraIntrinsics object | cameraParameters object

Camera intrinsic parameters, specified as the comma-separated pair consisting of
'CameraIntrinsic' and a cameraIntrinsics object or cameraParameters object.

Verbose — Display function progress
false or 0 (default) | true or 1

Display function progress, specified as the comma-separated pair consisting of 'Verbose' and a
logical 0 (false) or logical 1 (true).
Data Types: logical

Output Arguments
tform — Lidar to camera rigid transformation
rigid3d object

Lidar to camera rigid transformation, returned as a rigid3d object. The returned object registers
the point cloud data from a lidar sensor to the coordinate frame of a camera.

errors — Inaccuracy of the transformation matrix estimation
structure

Inaccuracy of the transformation matrix estimation, returned as a structure. The structure contains
these fields.

 estimateLidarCameraTransform

3-39

• RotationError — The difference between the normal angles defined by the checkerboard planes
in the point clouds (lidar frame) and those in the images (camera frame). The function estimates
the plane in the image using the checkerboard corner coordinates. The function returns the error
values in degrees, as a P-element numeric array. P is the number of point clouds.

• TranslationError — The difference between the centroid coordinates of checkerboard planes
in the point clouds and those in the images. The function returns the error values in meters, as a
P-element numeric array. P is the number of point clouds.

If you specify camera intrinsic parameters to the function using 'CameraIntrinsic' name-value
pair, then the structure contains this additional field.

• ReprojectionError — The difference between the projected (transformed) centroid coordinates
of the checkerboard planes from the point clouds and those in the images. The function returns
the error values in pixels, as a P-element numeric array. P is the number of point clouds.

Data Types: struct

See Also
Functions
bboxCameraToLidar | detectRectangularPlanePoints | estimateCheckerboardCorners3d
| fuseCameraToLidar | projectLidarPointsOnImage

Topics
“Lidar and Camera Calibration”

Introduced in R2020b

3 Functions

3-40

projectLidarPointsOnImage
Project lidar point cloud data onto image coordinate frame

Syntax
imPts = projectLidarPointsOnImage(ptCloudIn,intrinsics,tform)
imPts = projectLidarPointsOnImage(worldPoints,intrinsics,tform)
[imPts,indices] = projectLidarPointsOnImage(___)
[___] = projectLidarPointsOnImage(___ ,Name,Value)

Description
imPts = projectLidarPointsOnImage(ptCloudIn,intrinsics,tform) projects lidar point
cloud data onto an image coordinate frame using a rigid transformation between the lidar sensor and
camera, tform, and a set of camera intrinsic parameters, intrinsics. The output imPts contains
the 2-D coordinates of the projected points in the image frame.

imPts = projectLidarPointsOnImage(worldPoints,intrinsics,tform) projects lidar
points, specified as 3-D coordinates in the world frame, onto image coordinate frame.

[imPts,indices] = projectLidarPointsOnImage(___) returns the linear indices of the
projected points in the point cloud using any combination of input arguments in previous syntaxes.

[___] = projectLidarPointsOnImage(___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to any combination of arguments in previous syntaxes. For
example, 'ImageSize',[250 400] sets the size of the image on which to project the points to 250-
by-400 pixels.

Examples

Overlay Projected Lidar Points on Image

Load ground truth data from a MAT-file into the workspace. Extract the image and point cloud data
from the ground truth data.

dataPath = fullfile(toolboxdir('lidar'),'lidardata','lcc','sampleColoredPtCloud.mat');
gt = load(dataPath);
img = gt.im;
pc = gt.ptCloud;

Extract the camera intrinsic parameters from the ground truth data.

intrinsics = gt.camParams;

Extract the camera to lidar transformation matrix from the ground truth data, and invert to find the
lidar to camera transformation matrix.

tform = invert(gt.tform);

Downsample the point cloud data.

 projectLidarPointsOnImage

3-41

p1 = pcdownsample(pc,'gridAverage',0.5);

Project the point cloud onto the image frame.

imPts = projectLidarPointsOnImage(p1,intrinsics,tform);

Overlay the projected points on the image.

figure
imshow(img)
hold on
plot(imPts(:,1),imPts(:,2),'.','Color','r')
hold off

Input Arguments
ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

worldPoints — Points in world coordinate frame
M-by-3 matrix | M-by-N-by-3 array

Points in the world coordinate frame, specified as an M-by-3 matrix or M-by-N-by-3 array. If you
specify an M-by-3 matrix, each row contains 3-D world coordinates of a point in an unorganized point
cloud that contains M points in total. If you specify an M-by-N-by-3 array, M and N represent the
number of rows and columns, respectively, in an organized point cloud. Each channel of the array
contains the 3-D world coordinates of that point.

3 Functions

3-42

Data Types: single | double

intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

tform — Lidar to camera rigid transformation
rigid3d object

Lidar to camera rigid transformation, specified as a rigid3d object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ImageSize',[250 400] sets the size of the image on which to project the points to 250-
by-400 pixels.

Indices — Indices selected for projection onto image coordinate frame
vector of positive integers

Indices selected for projection onto image coordinate frame, specified as the comma-separated pair
consisting of 'Indices' and a vector of positive integers.
Data Types: single | double

ImageSize — Size of image on which points are projected
intrinsics.ImageSize (default) | two-element row vector

Size of the image on which the points are projected, specified as the comma-separated pair consisting
of 'ImageSize' and a two-element row vector of the form [width height] in pixels. The function uses
the specified dimensions to filter out the projected points that are not in the field of view of the
camera.

If you do no specify the'ImageSize' argument, then the function uses the ImageSize property
from the camera intrinsic parameters intrinsics to estimate the field of view of the camera.

Note If you specify an 'ImageSize' argument greater than the default argument, then the function
uses the default argument.

Data Types: single | double

Output Arguments
imPts — Points projected on image
M-by-2 matrix

Points projected on image, returned as an M-by-2 matrix. Each row contains the 2-D coordinates, in
the form [x y], a point in the image frame.
Data Types: single | double

 projectLidarPointsOnImage

3-43

indices — Linear indices of projected points
vector of positive integers

Linear indices of the projected points of the point cloud, returned as a vector of positive integers.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bboxCameraToLidar | detectRectangularPlanePoints | estimateCheckerboardCorners3d
| estimateLidarCameraTransform | fuseCameraToLidar

Topics
“Lidar and Camera Calibration”

Introduced in R2020b

3 Functions

3-44

fuseCameraToLidar
Fuse image information to lidar point cloud

Syntax
ptCloudOut = fuseCameraToLidar(I,ptCloudIn,intrinsics)
ptCloudOut = fuseCameraToLidar(I,ptCloudIn,intrinsics,tform)
ptCloudOut = fuseCameraToLidar(___ ,nonoverlapcolor)
[ptCloudOut,colormap] = fuseCameraToLidar(___)
[ptCloudOut,colormap,indices] = fuseCameraToLidar(___)

Description
ptCloudOut = fuseCameraToLidar(I,ptCloudIn,intrinsics) fuses information from an
image, I, to a specified point cloud, ptCloudIn, using the camera intrinsic parameters,
intrinsics.

The function crops the fused point cloud, ptCloudOut, so that it contains only the points present in
the field of view of the camera.

ptCloudOut = fuseCameraToLidar(I,ptCloudIn,intrinsics,tform) uses the camera to
lidar rigid transformation tform to bring the point cloud into image frame before fusing it to the
image information. Use this syntax when the point cloud data is not in the camera coordinate frame.

ptCloudOut = fuseCameraToLidar(___ ,nonoverlapcolor) returns a fused point cloud of the
same size as the input point cloud. The function uses the specified color nonoverlapcolor for
points that are outside the field of view of the camera in addition to any combination of input
arguments from previous syntaxes.

[ptCloudOut,colormap] = fuseCameraToLidar(___) returns the colors of the points
colormap of the fused point cloud.

[ptCloudOut,colormap,indices] = fuseCameraToLidar(___) returns linear indices of the
points in the fused point cloud that are in the field of view of the camera in addition to output
arguments from previous syntaxes.

Examples

Fuse Color Information from Camera to Lidar

Load a MAT-file containing ground truth data into the workspace. Extract the image and point cloud
from data.

dataPath = fullfile(toolboxdir('lidar'),'lidardata','lcc','sampleColoredPtCloud.mat');
gt = load(dataPath);
im = gt.im;
ptCloud = gt.ptCloud;

Plot the extracted point cloud.

 fuseCameraToLidar

3-45

pcshow(ptCloud)
title('Original Point Cloud')

Extract the lidar to camera transformation matrix and camera intrinsic parameters from the ground
truth data.

intrinsics = gt.camParams;
camToLidar = gt.tform;

Fuse the image to the point cloud.

ptCloudOut = fuseCameraToLidar(im,ptCloud,intrinsics,camToLidar);

Visualize the fused point cloud.

pcshow(ptCloudOut)
title('Colored Point Cloud')

3 Functions

3-46

Input Arguments
I — Color or grayscale image
H-by-W-by-C array

Color or grayscale image, specified as an H-by-W-by-C array.

• H — This specifies the height of the image.
• W — This specifies the width of the image.
• C — This specifies the number of color channels in the image. The function supports up to three

color channels in an image.

Data Types: single | double | int16 | uint8 | uint16

ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

 fuseCameraToLidar

3-47

tform — Camera to lidar rigid transformation
rigid3d object

Camera to lidar rigid transformation, specified as a rigid3d object.

nonoverlapcolor — Color specification for points outside camera field of view
color name | short color name | RGB Triplet

Color specification for points outside the camera field of view, specified as a color name, short color
name, or RGB triplet.

For a custom color, specify an RGB triplet. An RGB triplet is a three-element row vector whose
elements specify the intensities of the red, green, and blue components of the color. The intensities
must be in the range [0,1]; for example, [0.4 0.6 0.7]. Alternatively, you can specify some
common colors by name. This table lists the named color options and the equivalent RGB triplet
values.

Color Name Color Short Name RGB Triplet Appearance
'red' 'r' [1 0 0]
'green' 'g' [0 1 0]
'blue' 'b' [0 0 1]
'cyan' 'c' [0 1 1]
'magenta' 'm' [1 0 1]
'yellow' 'y' [1 1 0]
'black' 'k' [0 0 0]
'white' 'w' [1 1 1]

Data Types: single | double | char

Output Arguments
ptCloudOut — Fused point cloud
pointCloud object

Fused point cloud, returned as a pointCloud object.

colormap — Point cloud color map
M-by-3 matrix of real values in the range [0, 1] | M-by-N-by-3 array of real values in the range [0,
1]

Point cloud color map, returned as one of these options:

• M-by-3 matrix — For unorganized point clouds
• M-by-N-by-3 array — For organized point clouds

Each row of the matrix or channel of the array contains the RGB triplet for the corresponding point in
the point cloud. The function returns them as real values in the range [0, 1]. If you do not specify a
nonoverlapcolor argument, then the color value for points outside the field of view of the camera
is [0 0 0] (black).
Data Types: uint8

3 Functions

3-48

indices — Linear indices of fused point cloud points in camera field of view
vector of positive integers

Linear indices of the fused point cloud points in the camera field of view, returned as a vector of
positive integers.
Data Types: single | double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bboxCameraToLidar | detectRectangularPlanePoints | estimateCheckerboardCorners3d
| estimateLidarCameraTransform | projectLidarPointsOnImage

Topics
“Lidar and Camera Calibration”

Introduced in R2020b

 fuseCameraToLidar

3-49

bboxCameraToLidar
Estimate 3-D bounding boxes in point cloud from 2-D bounding boxes in image

Syntax
bboxesLidar = bboxCameraToLidar(bboxesCamera,ptCloudIn,intrinsics,tform)
[bboxesLidar,indices] = bboxCameraToLidar(___)
[bboxesLidar,indices,boxesUsed] = bboxCameraToLidar(___)
[___] = bboxCameraToLidar(___ ,Name,Value)

Description
bboxesLidar = bboxCameraToLidar(bboxesCamera,ptCloudIn,intrinsics,tform)
estimates 3-D bounding boxes in a point cloud frame, ptCloudIn, from 2-D bounding boxes in an
image, bboxesCamera. The function uses camera intrinsic parameters, intrinsics, and a camera
to lidar transformation matrix, tform, to estimate the 3-D bounding boxes, bboxesLidar.

[bboxesLidar,indices] = bboxCameraToLidar(___) returns the indices of the point cloud
points that are inside the 3-D bounding boxes by using the input arguments from the previous syntax.

[bboxesLidar,indices,boxesUsed] = bboxCameraToLidar(___) indicates for which of the
specified 2-D bounding boxes the function detected a corresponding 3-D bounding box in the point
cloud.

[___] = bboxCameraToLidar(___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to any of the argument combinations in previous syntaxes. For
example, 'ClusterThreshold',0.5 sets the Euclidean distance threshold for differentiating point
cloud clusters to 0.5 world units.

Examples

Transfer Bounding Box from Image to Point Cloud

Load ground truth data from a MAT-file into the workspace. Extract the image, point cloud data, and
camera intrinsic parameters from the ground truth data.

dataPath = fullfile(toolboxdir('lidar'),'lidardata','lcc','bboxGT.mat');
gt = load(dataPath);
im = gt.im;
pc = gt.pc;
intrinsics = gt.cameraParams;

Extract the camera to lidar transformation matrix from the ground truth data.

tform = gt.camToLidar;

Extract the 2-D bounding box information.

bboxImage = gt.box;

3 Functions

3-50

Display the 2-D bounding box overlaid on the image.

annotatedImage = insertObjectAnnotation(im,'Rectangle',bboxImage,'Vehicle');
figure
imshow(annotatedImage)

Estimate the bounding box in the point cloud.

[bboxLidar,indices] = ...
bboxCameraToLidar(bboxImage,pc,intrinsics,tform,'ClusterThreshold',1);

Display the 3-D bounding box overlaid on the point cloud.

figure
pcshow(pc)
xlim([0 50])
ylim([0 20])
showShape('cuboid',bboxLidar,'Opacity',0.5,'Color','green')

 bboxCameraToLidar

3-51

Input Arguments
bboxesCamera — 2-D bounding boxes in camera frame
M-by-4 matrix of real values

2-D bounding boxes in the camera frame, specified as an M-by-4 matrix of real values. Each row of
the matrix contains the location and size of a rectangular bounding box in the form [x y width height].
The x and y elements specify the x and y coordinates, respectively, for the upper-left corner of the
rectangle. The width and height elements specify the size of the rectangle. M is the number of
bounding boxes.

Note The function assumes that the image data that corresponds to the 2-D bounding boxes and the
point cloud data are time synchronized.

Data Types: single | double

ptCloudIn — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

3 Functions

3-52

Note The function assumes that the point cloud is in the vehicle coordinate system, where the x-axis
points forward from the ego vehicle.

intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

tform — Camera to lidar rigid transformation
rigid3d object

Camera to lidar rigid transformation, specified as a rigid3d object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ClusterThreshold',0.5 sets the Euclidean distance threshold for differentiating point
cloud clusters to 0.5 world units.

ClusterThreshold — Clustering threshold for two adjacent points
1 (default) | positive scalar

Clustering threshold for two adjacent points, specified as the comma-separated pair consisting of
'ClusterThreshold' and a positive scalar. The clustering process is based on the Euclidean
distance between two adjacent points. If the distance between two adjacent points is less than the
specified clustering threshold, then the points belong to the same cluster. If the function returns a 3-
D bounding box that is smaller than expected, try specifying a higher 'ClusterThreshold' value.
Data Types: single | double

MaxDetectionRange — Range of detection from lidar sensor
[1e–6 Inf] (default) | two-element vector of real values in the range (0, Inf]

Range of detection from lidar sensor, specified as the comma-separated pair consisting of
'MaxDetectionRange' and a two-element vector of real values in the range (0, Inf]. The first
element of the vector specifies the shortest distance from the sensor at which to search for bounding
boxes, and the second element specifies the distance at which the function stops searching. The value
of Inf indicates the outermost points of the point cloud.

The first element must be smaller than the second element. Specify both in world units.
Data Types: single | double

Output Arguments
bboxesLidar — 3-D bounding boxes in lidar frame
N-by-9 matrix of real values

3-D bounding boxes in the lidar frame, returned as an N-by-9 matrix of real values. N is the number
of detected 3-D bounding boxes. Each row of the matrix has the form [xctr yctr zctr xlen ylen zlen xrot yrot
zrot].

 bboxCameraToLidar

3-53

• xctr, yctr, and zctr — These values specify the x-, y-, and z-axis coordinates, respectively, of the
center of the cuboid bounding box.

• xlen, ylen, and zlen — These values specify the length of the cuboid along the x-, y-, and z-axis,
respectively, before it is rotated.

• xrot, yrot, and zrot — These values specify the rotation angles of the cuboid around the x-, y-, and z-
axis, respectively. These angles are clockwise-positive when looking in the forward direction of
their corresponding axes.

This figure shows how these values determine the position of a cuboid.

Data Types: single | double

indices — Indices of points inside 3-D bounding boxes
column vector | N-element cell array

Indices of the points inside the 3-D bounding boxes, returned as a column vector or an N-element cell
array.

If the function detects only one 3-D bounding box in the point cloud, it returns a column vector. Each
element of the vector is the point cloud index of a point detected in the 3-D bounding box.

If the function detects multiple 3-D bounding boxes, it returns an N-element cell array. N is the
number of 3-D bounding boxes detected in the point cloud, and each element of the cell array
contains the point cloud indices of the points detected in the corresponding 3-D bounding box.
Data Types: single | double

3 Functions

3-54

boxesUsed — Bounding box detection flag
M-element row vector of logicals

Bounding box detection flag, returned as an M-element row vector of logicals. M is the number of
input 2-D bounding boxes. If the function detects a corresponding 3-D bounding box in the point
cloud, then it returns a value of true for that input 2-D bounding box. If the function does not detect
a corresponding 3-D bounding box, then it returns a value of false.
Data Types: logical

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bboxLidarToCamera | fuseCameraToLidar | projectLidarPointsOnImage

Topics
“Lidar and Camera Calibration”

Introduced in R2020b

 bboxCameraToLidar

3-55

pcmatchfeatures
Find matching features between point clouds

Syntax
indexPairs = pcmatchfeatures(features1,features2)
indexPairs = pcmatchfeatures(features1,features2,ptCloud1,ptCloud2)
[indexPairs,scores] = pcmatchfeatures(___)
[___] = pcmatchfeatures(___ ,Name,Value)

Description
indexPairs = pcmatchfeatures(features1,features2) finds matching features between the
input matrices of extracted point cloud features and returns their indices within each feature matrix.

indexPairs = pcmatchfeatures(features1,features2,ptCloud1,ptCloud2) rejects
ambiguous feature matches based on spatial relation information from the point clouds
corresponding to the feature matrices.

[indexPairs,scores] = pcmatchfeatures(___) returns the normalized Euclidean distances
between the matching features using any combination of input arguments from previous syntaxes.

[___] = pcmatchfeatures(___ ,Name,Value) specifies options using one or more name-value
pair arguments in addition to any combination of arguments in previous syntaxes. For example,
'MatchThreshold',0.03 sets the normalized distance threshold for matching features to 0.03.

Examples

Match Corresponding Features in Point Clouds

This example shows how to match corresponding point cloud features using the pcmatchfeatures
function.

Preprocessing

Read point cloud data into the workspace.

ptCld = pcread('teapot.ply');

Downsample the point cloud.

ptCloud = pcdownsample(ptCld,'gridAverage',0.05);

Transform and create a new point cloud using the transformation matrix A.

A = [cos(pi/6) sin(pi/6) 0 0; ...
 -sin(pi/6) cos(pi/6) 0 0; ...
 0 0 1 0; ...
 5 5 10 1];
tform = affine3d(A);
ptCloudTformed = pctransform(ptCloud,tform);

3 Functions

3-56

Visualize the two point clouds.

pcshowpair(ptCloud,ptCloudTformed);
legend("Original", "Transformed","TextColor",[1 1 0]);

Match Corresponding Features

In the preprocessing section, we created a second point cloud by translating and rotating the original
point cloud. In this section, we use the pcmatchfeatures function to find matching features
between these point clouds.

Extract features from both the point clouds using the extractFPFHFeatures function.

fixedFeature = extractFPFHFeatures(ptCloud);
movingFeature = extractFPFHFeatures(ptCloudTformed);
length(movingFeature)

ans = 16578

Find matching features.

[matchingPairs,scores] = pcmatchfeatures(fixedFeature,movingFeature,ptCloud,ptCloudTformed);
length(matchingPairs)

ans = 3397

A score close to zero means that the algorithm is confident about a match and vice-versa. Calculate
the mean score for all the matches using the scores vector.

 pcmatchfeatures

3-57

mean(scores)

ans = 0.0017

Input Arguments
features1 — First feature set
M1-by-N matrix

First feature set, specified as an M1-by-N matrix. The matrix contains M1 features, and N is the length
of each feature vector. Each row represents a single feature.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

features2 — Second feature set
M2-by-N matrix

Second feature set, specified as an M2-by-N matrix. The matrix contains M2 features, and N is the
length of each feature vector. Each row represents a single feature.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
logical

ptCloud1 — First point cloud
pointCloud object

First point cloud, specified as a pointCloud object.

ptCloud2 — Second point cloud
pointCloud object

Second point cloud, specified as a pointCloud object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'MatchThreshold',0.03 sets the normalized distance threshold for matching features to
0.03.

Method — Matching method
'Exhaustive' (default) | 'Approximate'

Matching method, specified as the comma-separated pair consisting of 'Method' and either
'Exhaustive' or 'Approximate'. The method determines how the function finds the nearest
neighbors between features1 and features2. Two feature vectors match when the distance
between them is less or equal to the matching threshold.

• 'Exhaustive' — Compute the pairwise distance between the specified feature vectors.
• 'Approximate' — Use an efficient approximate nearest neighbor search. Use this method for

large feature sets. For more information about the algorithm, see [1]

Data Types: char | string

3 Functions

3-58

MatchThreshold — Matching threshold
0.01 (default) | scalar in the range (0, 1]

Matching threshold, specified as the comma-separated pair consisting of 'MatchThreshold' and a
scalar in the range (0, 1].

Two feature vectors match when the normalized Euclidean distance between them is less than or
equal to the matching threshold. A higher value may result in additional matches, but increases the
risk of false positives.
Data Types: single | double

RejectRatio — Spatial relation threshold
0.95 (default) | scalar in the range (0,1)

Spatial relation threshold, specified as the comma-separated pair consisting of 'RejectRatio' and
a scalar in the range (0,1).

The function uses point cloud data to estimate the spatial relation between the points associated with
potential feature matches and reject matches based on the spatial relation threshold. A lower spatial
relation threshold may result in additional matches, but increases the risk of false positives.

The function does not consider the spatial relation threshold if you do not specify values for the
ptCloud1 and ptCloud2 input arguments.

Note At least three features must be matched between the feature matrices to consider the spatial
relation.

Data Types: single | double

Output Arguments
indexPairs — Indices of matched features
P-by-2 matrix

Indices of matched features, returned as a P-by-2 matrix. P is the number of matched features. Each
row corresponds to a matched feature between the features1 and features2 inputs, where the
first element is the index of the feature in features1 and the second element is the index of the
matching feature in features2.
Data Types: uint32

scores — Normalized Euclidean distance between matching features
P-element column vector

Normalized Euclidean distance between matching features, returned as a P-element column vector.
The ith element of the vector is the distance between the matched features in the ith row of the
indexPairs output.
Data Types: single | double

 pcmatchfeatures

3-59

References
[1] Muja, Marius and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration." In Proceedings of the Fourth International Conference on Computer Vision
Theory and Applications, 331-40. Lisboa, Portugal: SciTePress - Science and Technology
Publications, 2009. https://doi.org/10.5220/0001787803310340.

[2] Zhou, Qian-Yi, Jaesik Park, and Vladlen Koltun. "Fast global registration." In European Conference
on Computer Vision, pp. 766-782. Springer, Cham, 2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
extractFPFHFeatures | pcshowMatchedFeatures

Introduced in R2020b

3 Functions

3-60

pcshowMatchedFeatures
Display point clouds with matched feature points

Syntax
pcshowMatchedFeatures(ptCloud1,ptCloud2,matchedPtCloud1,matchedPtCloud2)
pcshowMatchedFeatures(segments1,segments2,features1,features2)
ax = pcshowMatchedFeatures(___)
[___] = pcshowMatchedFeatures(___ ,Name,Value)

Description
pcshowMatchedFeatures(ptCloud1,ptCloud2,matchedPtCloud1,matchedPtCloud2)
displays point clouds, ptCloud1 and ptCloud2, with their matched feature points,
matchedPtCloud1 and matchedPtCloud2. The plot is color coded by point cloud and each
connected to the corresponding point in the other point cloud by a line.

pcshowMatchedFeatures(segments1,segments2,features1,features2) displays the point
cloud segments, segments1 and segments2, with their corresponding centroids in the “Centroid”
on page 2-0 property of features1 and features2. The plot is color coded and the
corresponding centroids are connected by a line.

ax = pcshowMatchedFeatures(___) additionally returns an Axes object using the input
arguments from the previous syntax.

[___] = pcshowMatchedFeatures(___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to any combination of arguments in previous syntaxes. For
example, 'Method','montage' visualizes the point clouds next to each other in the axes.

Examples

Visualize Matching Features in Point Clouds

This example shows how to visualize matching point cloud features using the
pcshowMatchedFeatures function. The example uses features calculated using
extractFPFHFeatures function.

Load the required files into the workspace.

load("features1.mat");
load("features2.mat");
load("ptCloud1.mat");
load("ptCloud2.mat");

Match features between two point clouds.

indexPairs = pcmatchfeatures(features1,features2,ptCloud1,ptCloud2);

Create point clouds of only the points in each point cloud with matching features in the other point
cloud.

 pcshowMatchedFeatures

3-61

matchedPts1 = select(ptCloud1,indexPairs(:,1));
matchedPts2 = select(ptCloud2,indexPairs(:,2));

Visualize the matches.

pcshowMatchedFeatures(ptCloud1,ptCloud2,matchedPts1,matchedPts2, ...
 "Method","montage")
xlim([-40 210])
ylim([-50 50])
title("Matched Points")

The matched features and point clouds are color coded to improve visualization:

• Magenta — Moving point cloud.
• Green — Fixed point cloud.
• Red circle — Matched points in the moving point cloud.
• Blue asterisk — Matched points in the fixed point cloud.
• Yellow — Line connecting matched features.

Match Eigenvalue-Based Features Between Point Clouds

Create a Velodyne PCAP file reader.

veloReader = velodyneFileReader('lidarData_ConstructionRoad.pcap','HDL32E');

3 Functions

3-62

Read the first and fourth scans from the file.

ptCloud1 = readFrame(veloReader,1);
ptCloud2 = readFrame(veloReader,4);

Remove the ground plane from the scans.

maxDistance = 1; % in meters
referenceVector = [0 0 1];
[~,~,selectIdx] = pcfitplane(ptCloud1,maxDistance,referenceVector);
ptCloud1 = select(ptCloud1,selectIdx,'OutputSize','full');
[~,~,selectIdx] = pcfitplane(ptCloud2,maxDistance,referenceVector);
ptCloud2 = select(ptCloud2,selectIdx,'OutputSize','full');

Cluster the point clouds with a minimum of 10 points per cluster.

minDistance = 2; % in meters
minPoints = 10;
labels1 = pcsegdist(ptCloud1,minDistance,'NumClusterPoints',minPoints);
labels2 = pcsegdist(ptCloud2,minDistance,'NumClusterPoints',minPoints);

Extract eigen-value features and the corresponding segments from each point cloud.

[eigFeatures1,segments1] = extractEigenFeatures(ptCloud1,labels1);
[eigFeatures2,segments2] = extractEigenFeatures(ptCloud2,labels2);

Create matrices of the features and centroids extracted from each point cloud, for matching.

features1 = vertcat(eigFeatures1.Feature);
features2 = vertcat(eigFeatures2.Feature);
centroids1 = vertcat(eigFeatures1.Centroid);
centroids2 = vertcat(eigFeatures2.Centroid);

Find putative feature matches.

indexPairs = pcmatchfeatures(features1,features2, ...
 pointCloud(centroids1),pointCloud(centroids2));

Get the matched segments and features for visualization.

matchedSegments1 = segments1(indexPairs(:,1));
matchedSegments2 = segments2(indexPairs(:,2));
matchedFeatures1 = eigFeatures1(indexPairs(:,1));
matchedFeatures2 = eigFeatures2(indexPairs(:,2));

Visualize the matches.

figure
pcshowMatchedFeatures(matchedSegments1,matchedSegments2,matchedFeatures1,matchedFeatures2)
title('Matched Segments')

Input Arguments
ptCloud1 — First point cloud
pointCloud object

First point cloud, specified as a pointCloud object.

 pcshowMatchedFeatures

3-63

ptCloud2 — Second point cloud
pointCloud object

Second point cloud, specified as a pointCloud object.

matchedPtCloud1 — Matched points in first point cloud
pointCloud object

Matched points in the first point cloud, specified as a pointCloud object. Each point is a feature
match for the point with the corresponding index in matchedPtCloud2.

matchedPtCloud2 — Matched points in second point cloud
pointCloud object

Matched points in the second point cloud, specified as a pointCloud object. Each point is a feature
match for the point with the corresponding index in matchedPtCloud1.

segments1 — Point cloud segments
M-element vector of pointCloud objects

Point cloud segments, specified as a M-element vector of pointCloud objects.

segments2 — Point cloud segments
M-element vector of pointCloud objects

Point cloud segments, specified as a M-element vector of pointCloud objects.

features1 — Corresponding centroids in first segment features
M-element vector of eigenFeature objects

Corresponding centroids in the first segment features, specified as a M-element vector of
eigenFeature objects. The “Centroid” on page 2-0 property of each feature in features1 is
plotted with a red circle by default.

features2 — Corresponding centroids in second segment features
M-element vector of eigenFeature objects

Corresponding centroids in the second segment features, specified as a M-element vector of
eigenFeature objects. The “Centroid” on page 2-0 property of each feature in features2 is
plotted with a blue asterisk by default.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Method','montage' visualizes the point clouds next to each other in the axes.

Method — Display method
'overlay' (default) | 'montage'

Display method, specified as the comma-separated pair consisting of 'Method' and one of these
options:

3 Functions

3-64

• 'overlay' — Overlay ptCloud2 on ptCloud1.
• 'montage' — Display ptCloud1 and ptCloud2 next to each other in the same axes.

Data Types: char | string

PlotOptions — Line style and color options
{'ro','b*','y-'} (default) | cell array of character vectors

Line style and color options, specified as the comma-separated pair consisting of 'PlotOptions'
and a cell array of character vectors of the form {MarkerStyle1, MarkerStyle2, LineStyle}.
MarkerStyle1 specifies the color and marker symbol for the matched points matchedPtCloud1 in
the first point cloud ptCloud1. MarkerStyle2 specifies the color and marker symbol for the matched
points matchedPtCloud2 in the second point cloud ptCloud2. LineStyle specifies the color and line
style of the lines connecting the matched points of the first point cloud to the matched points of the
second. For more information on line styles, marker symbols, and colors, see LineSpec.
Data Types: char

Parent — Output axes
axes graphics object

Output axes, specified as the comma-separated pair consisting of 'Parent' and an axes graphics
object.

Output Arguments
ax — Axes handle
axes graphics object

Axes handle, returned as an axes graphics object.

See Also
Functions
extractEigenFeatures | extractFPFHFeatures | pcmapsegmatch | pcmatchfeatures

Objects
eigenFeature | pointCloud

Topics
“Lidar Localization Using Segment Matching” on page 2-6
“Build Map and Localize Using Segment Matching”

Introduced in R2020b

 pcshowMatchedFeatures

3-65

squeezesegv2Layers
Create SqueezeSegV2 segmentation network for organized lidar point cloud

Syntax
lgraph = squeezesegv2Layers(inputSize,numClasses)
lgraph = squeezesegv2Layers(___ ,Name,Value)

Description
lgraph = squeezesegv2Layers(inputSize,numClasses) returns a SqueezeSegV2 layer graph
lgraph for organized point clouds of size inputSize and the number of classes numClasses.

SqueezeSegV2 is a convolutional neural network that predicts pointwise labels for an organized lidar
point cloud.

Use the squeezesegv2Layers function to create the network architecture for SqueezeSegV2. This
function requires Deep Learning Toolbox™.

lgraph = squeezesegv2Layers(___ ,Name,Value) specifies options using one or more name-
value pair arguments in addition to the input arguments in the previous syntax. For example,
'NumEncoderModules',4 sets the number of encoders used to create the network to four.

Examples

Create Standard SqueezeSegV2 Network

Set the network input parameters.

inputSize = [64 512 5];
numClasses = 4;

Create a SqueezeSegV2 layer graph.

lgraph = squeezesegv2Layers(inputSize,numClasses)

lgraph =
 LayerGraph with properties:

 Layers: [168x1 nnet.cnn.layer.Layer]
 Connections: [186x2 table]
 InputNames: {'input'}
 OutputNames: {'focalloss'}

Display the network.

analyzeNetwork(lgraph)

3 Functions

3-66

Create Custom SqueezeSegV2 Network

Set the network input parameters.

inputSize = [64 512 6];
numClasses = 2;

Create a custom SqueezeSegV2 layer graph.

lgraph = squeezesegv2Layers(inputSize,numClasses, ...
'NumEncoderModules',4,'NumContextAggregationModules',2)

lgraph =
 LayerGraph with properties:

 Layers: [232x1 nnet.cnn.layer.Layer]
 Connections: [257x2 table]
 InputNames: {'input'}
 OutputNames: {'focalloss'}

Display the network.

analyzeNetwork(lgraph)

Input Arguments
inputSize — Size of network input
two-element row vector | three-element row vector

Size of the network input, specified as one of these options:

• Two-element vector of the form [height width].
• Three-element vector of the form [height width channels], where channels specifies the number of

input channels. Set channels to 3 for RGB images, to 1 for grayscale images, or to the number of
channels for multispectral and hyperspectral images.

numClasses — Number of classes
integer greater than 1

Number of semantic segmentation classes, specified as an integer greater than 1.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NumEncoderModules',4 sets the number of encoders used to create the network to four.

NumEncoderModules — Number of encoder modules
2 (default) | nonnegative integer

Number of encoder modules used to create the network, specified as the comma-separated pair
consisting of 'NumEncoderModules' and a nonnegative integer. Each encoder module consists of

 squeezesegv2Layers

3-67

two fire modules and one max-pooling layer connected sequentially. If you specify 0, then the function
returns a network with a default encoder that consists of convolution and max-pooling layers with no
fire modules. Use this name-value pair to customize the number of fire modules in the network.

NumContextAggregationModules — Number of context aggregation modules
3 (default) | integer in the range [0,3]

Number of context aggregation modules (CAMs), specified as the comma-separated pair consisting of
'NumContextAggregationModules' and an integer in the range [0,3]. If you specify 0, then the
function creates a network without a CAM.

Output Arguments
lgraph — Layers
LayerGraph object

Layers that represent the SqueezeSegV2 network architecture, returned as a layerGraph object.

More About
SqueezeSegV2 Network

• A SqueezeSegV2 network consists of encoder modules, CAMs, intermediate fixed fire modules [1]
for feature extraction, and decoder modules. The function automatically configures the number of
decoder modules based on the specified number of encoder modules.

• The function uses narrow-normal weight initialization method to initialize the weights of each
convolution layer within encoder and decoder subnetworks .

• The function initializes all bias terms to zero.
• The function adds the padding for all convolution and max-pooling layers such that the output has

the same size as the input (if the stride equals 1).
• The height of the input tensor is significantly lower than the width in organized lidar point cloud

data. To address this, the network downsamples the width dimension of the input data in
convolution and max-pooling layers. The width of the input data must be a multiple of 2(D + 2),
where D is the number of encoder modules used to create the network.

• This function does not provide a recurrent conditional random field (CRF) layer.

References
[1] Wu, Bichen, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and Kurt Keutzer. “SqueezeSegV2:

Improved Model Structure and Unsupervised Domain Adaptation for Road-Object
Segmentation from a LiDAR Point Cloud.” In 2019 International Conference on Robotics and
Automation (ICRA), 4376–82. Montreal, QC, Canada: IEEE, 2019.https://doi.org/10.1109/
ICRA.2019.8793495.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

3 Functions

3-68

https://doi.org/10.1109/ICRA.2019.8793495
https://doi.org/10.1109/ICRA.2019.8793495

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Functions
evaluateSemanticSegmentation | semanticseg | trainNetwork

Objects
DAGNetwork | focalLossLayer | layerGraph | pixelClassificationLayer

Topics
“Lidar Point Cloud Semantic Segmentation Using SqueezeSegV2 Deep Learning Network”

Introduced in R2020b

 squeezesegv2Layers

3-69

matchScans
Estimate pose between two laser scans

Syntax
pose = matchScans(currScan,refScan)
pose = matchScans(currRanges,currAngles,refRanges,refAngles)
[pose,stats] = matchScans(___)
[___] = matchScans(___ ,Name,Value)

Description
pose = matchScans(currScan,refScan) finds the relative pose between a reference
lidarScan and a current lidarScan object using the normal distributions transform (NDT).

pose = matchScans(currRanges,currAngles,refRanges,refAngles) finds the relative pose
between two laser scans specified as ranges and angles.

[pose,stats] = matchScans(___) returns additional statistics about the scan match result
using the previous input arguments.

[___] = matchScans(___ ,Name,Value) specifies additional options specified by one or more
Name,Value pair arguments.

Examples

Match Lidar Scans

Create a reference lidar scan using lidarScan. Specify ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Using the transformScan (Robotics System Toolbox) function, generate a second lidar scan at an
x,y offset of (0.5,0.2).

currScan = transformScan(refScan,[0.5 0.2 0]);

Match the reference scan and the second scan to estimate the pose difference between them.

pose = matchScans(currScan,refScan);

Use the transformScan function to align the scans by transforming the second scan into the frame
of the first scan using the relative pose difference. Plot both the original scans and the aligned scans.

currScan2 = transformScan(currScan,pose);
subplot(2,1,1);
hold on
plot(currScan)

3 Functions

3-70

plot(refScan)
title('Original Scans')
hold off
subplot(2,1,2);
hold on
plot(currScan2)
plot(refScan)
title('Aligned Scans')
xlim([0 5])
hold off

Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

 matchScans

3-71

currRanges — Current laser scan ranges
vector in meters

Current laser scan ranges, specified as a vector. Ranges are given as distances to objects measured
from the laser sensor.

Your laser scan ranges can contain Inf and NaN values, but the algorithm ignores them.

currAngles — Current laser scan angles
vector in radians

Current laser scan angles, specified as a vector in radians. Angles are given as the orientations of the
corresponding range measurements.

refRanges — Reference laser scan ranges
vector in meters

Reference laser scan ranges, specified as a vector in meters. Ranges are given as distances to objects
measured from the laser sensor.

Your laser scan ranges can contain Inf and NaN values, but the algorithm ignores them.

refAngles — Reference laser scan angles
vector in radians

Reference laser scan angles, specified as a vector in radians. Angles are given as the orientations of
the corresponding range measurements.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "InitialPose",[1 1 pi/2]

SolverAlgorithm — Optimization algorithm
"trust-region" (default) | "fminunc"

Optimization algorithm, specified as either "trust-region" or "fminunc". Using "fminunc"
requires an Optimization Toolbox™ license.

InitialPose — Initial guess of current pose
[0 0 0] (default) | [x y theta]

Initial guess of the current pose relative to the reference laser scan, specified as the comma-
separated pair consisting of "InitialPose" and an [x y theta] vector. [x y] is the translation
in meters and theta is the rotation in radians.

CellSize — Length of cell side
1 (default) | numeric scalar

Length of a cell side in meters, specified as the comma-separated pair consisting of "CellSize" and
a numeric scalar. matchScans uses the cell size to discretize the space for the NDT algorithm.

Tuning the cell size is important for proper use of the NDT algorithm. The optimal cell size depends
on the input scans and the environment of your robot. Larger cell sizes can lead to less accurate

3 Functions

3-72

matching with poorly sampled areas. Smaller cell sizes require more memory and less variation
between subsequent scans. Sensor noise influences the algorithm with smaller cell sizes as well.
Choosing a proper cell size depends on the scale of your environment and the input data.

MaxIterations — Maximum number of iterations
400 (default) | scalar integer

Maximum number of iterations, specified as the comma-separated pair consisting of
"MaxIterations" and a scalar integer. A larger number of iterations results in more accurate pose
estimates, but at the expense of longer execution time.

ScoreTolerance — Lower bounds on the change in NDT score
1e-6 (default) | numeric scalar

Lower bound on the change in NDT score, specified as the comma-separated pair consisting of
"ScoreTolerance" and a numeric scalar. The NDT score is stored in the Score field of the output
stats structure. Between iterations, if the score changes by less than this tolerance, the algorithm
converges to a solution. A smaller tolerance results in more accurate pose estimates, but requires a
longer execution time.

Output Arguments
pose — Pose of current scan
[x y theta]

Pose of current scan relative to the reference scan, returned as [x y theta], where [x y] is the
translation in meters and theta is the rotation in radians.

stats — Scan matching statistics
structure

Scan matching statistics, returned as a structure with the following fields:

• Score — Numeric scalar representing the NDT score while performing scan matching. This score
is an estimate of the likelihood that the transformed current scan matches the reference scan.
Score is always nonnegative. Larger scores indicate a better match.

• Hessian — 3-by-3 matrix representing the Hessian of the NDT cost function at the given pose
solution. The Hessian is used as an indicator of the uncertainty associated with the pose estimate.

References
[1] Biber, P., and W. Strasser. "The Normal Distributions Transform: A New Approach to Laser Scan

Matching." Intelligent Robots and Systems Proceedings. 2003.

[2] Magnusson, Martin. "The Three-Dimensional Normal-Distributions Transform -- an Efficient
Representation for Registration, Surface Analysis, and Loop Detection." PhD Dissertation.
Örebro University, School of Science and Technology, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 matchScans

3-73

Code generation is supported for the default SolverAlgorithm, "trust-region". You cannot use
the "fminunc" algorithm in code generation.

See Also
Functions
lidarScan | matchScansGrid | matchScansLine

Classes
monteCarloLocalization | occupancyMap

Introduced in R2020b

3 Functions

3-74

matchScansGrid
Estimate pose between two lidar scans using grid-based search

Syntax
pose = matchScansGrid(currScan,refScan)
[pose,stats] = matchScansGrid(___)
[___] = matchScansGrid(___ ,Name,Value)

Description
pose = matchScansGrid(currScan,refScan) finds the relative pose between a reference
lidarScan and a current lidarScan object using a grid-based search. matchScansGrid converts
lidar scan pairs into probabilistic grids and finds the pose between the two scans by correlating their
grids. The function uses a branch-and-bound strategy to speed up computation over large discretized
search windows.

[pose,stats] = matchScansGrid(___) returns additional statistics about the scan match
result using the previous input arguments.

[___] = matchScansGrid(___ ,Name,Value) specifies options using one or more Name,Value
pair arguments. For example, 'InitialPose',[1 1 pi/2] specifies an initial pose estimate for
scan matching.

Examples

Match Scans Using Grid-Based Search

Perform scan matching using a grid-based search to estimate the pose between two laser scans.
Generate a probabilistic grid from the scans and estimate the pose difference from those grids.

Load the laser scan data. These two scans are from an actual lidar sensor with changes in the robot
pose and are stored as lidarScan objects.

load laserScans.mat scan scan2
plot(scan)
hold on
plot(scan2)
hold off

 matchScansGrid

3-75

Use matchScansGrid to estimate the pose between the two scans.

relPose = matchScansGrid(scan2,scan);

Using the estimated pose, transform the current scan back to the reference scan. The scans overlap
closely when you plot them together.

scan2Tformed = transformScan(scan2,relPose);
plot(scan)
hold on
plot(scan2Tformed)
hold off

3 Functions

3-76

Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'InitialPose',[1 1 pi/2]

InitialPose — Initial guess of current pose
[0 0 0] (default) | [x y theta]

 matchScansGrid

3-77

Initial guess of the current pose relative to the reference laser scan, specified as the comma-
separated pair consisting of 'InitialPose' and an [x y theta] vector. [x y] is the translation
in meters and theta is the rotation in radians.

Resolution — Grid cells per meter
20 (default) | positive integer

Grid cells per meter, specified as the comma-separated pair consisting of 'Resolution' and a
positive integer. The accuracy of the scan matching result is accurate up to the grid cell size.

MaxRange — Maximum range of lidar sensor
8 (default) | positive scalar

Maximum range of lidar sensor, specified as the comma-separated pair consisting of 'MaxRange'
and a positive scalar.

TranslationSearchRange — Search range for translation
[4 4] (default) | [x y] vector

Search range for translation, specified as the comma-separated pair consisting of
'TranslationSearchRange' and an [x y] vector. These values define the search window in
meters around the initial translation estimate given in InitialPose. If the InitialPose is given as
[x0 y0], then the search window coordinates are [x0-x x0+x] and [y0-y y0+y]. This parameter
is used only when InitialPose is specified.

RotationSearchRange — Search range for rotation
pi/4 (default) | positive scalar

Search range for rotation, specified as the comma-separated pair consisting of
'RotationSearchRange' and a positive scalar. This value defines the search window in radians
around the initial rotation estimate given in InitialPose. If the InitialPose rotation is given as
th0, then the search window is [th0-a th0+a], where a is the rotation search range. This
parameter is used only when InitialPose is specified.

Output Arguments
pose — Pose of current scan
[x y theta] vector

Pose of current scan relative to the reference scan, returned as an [x y theta] vector, where [x
y] is the translation in meters and theta is the rotation in radians.

stats — Scan matching statistics
structure

Scan matching statistics, returned as a structure with the following field:

• Score — Numeric scalar representing the score while performing scan matching. This score is an
estimate of the likelihood that the transformed current scan matches the reference scan. Score is
always nonnegative. Larger scores indicate a better match, but values vary depending on the lidar
data used.

• Covariance — Estimated covariance representing the confidence of the computed relative pose,
returned as a 3-by-3 matrix.

3 Functions

3-78

References
[1] Hess, Wolfgang, Damon Kohler, Holger Rapp, and Daniel Andor. "Real-Time Loop Closure in 2D

LIDAR SLAM." 2016 IEEE International Conference on Robotics and Automation (ICRA).
2016.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
lidarScan | matchScans | matchScansLine

Classes
lidarSLAM

Introduced in R2020b

 matchScansGrid

3-79

matchScansLine
Estimate pose between two laser scans using line features

Syntax
relpose = matchScansLine(currScan,refScan,initialRelPose)
[relpose,stats] = matchScansLine(___)
[relpose,stats,debugInfo] = matchScansLine(___)
[___] = matchScansLine(___ ,Name,Value)

Description
relpose = matchScansLine(currScan,refScan,initialRelPose) estimates the relative
pose between two scans based on matched line features identified in each scan. Specify an initial
guess on the relative pose, initialRelPose.

[relpose,stats] = matchScansLine(___) returns additional information about the covariance
and exit condition in stats as a structure using the previous inputs.

[relpose,stats,debugInfo] = matchScansLine(___) returns additional debugging info,
debugInfo, from the line-based scan matching result.

[___] = matchScansLine(___ ,Name,Value) specifies options using one or more Name,Value
pair arguments.

Examples

Estimate Pose of Scans with Line Features

This example shows how to use the matchScansLine function to estimate the relative pose between
lidar scans given an initial estimate. The identified line features are visualized to show how the scan-
matching algorithm associates features between scans.

Load a pair of lidar scans. The .mat file also contains an initial guess of the relative pose difference,
initGuess, which could be based on odometry or other sensor data.

load tb3_scanPair.mat
plot(s1)
hold on
plot(s2)
hold off

3 Functions

3-80

Set parameters for line feature extraction and association. The noise of the lidar data determines the
smoothness threshold, which defines when a line break occurs for a specific line feature. Increase
this value for more noisy lidar data. The compatibility scale determines when features are considered
matches. Increase this value for looser restrictions on line feature parameters.

smoothnessThresh = 0.2;
compatibilityScale = 0.002;

Call matchScansLine with the given initial guess and other parameters specified as name-value
pairs. The function calculates line features for each scan, attempts to match them, and uses an
overall estimate to get the difference in pose.

[relPose, stats, debugInfo] = matchScansLine(s2, s1, initGuess, ...
 'SmoothnessThreshold', smoothnessThresh, ...
 'CompatibilityScale', compatibilityScale);

After matching the scans, the debugInfo output gives you information about the detected line
feature parameters, [rho alpha], and the hypothesis of which features match between scans.

debugInfo.MatchHypothesis states that the first, second, and sixth line feature in s1 match the
fifth, second, and fourth features in s2.

debugInfo.MatchHypothesis

ans = 1×6

 5 2 0 0 0 4

 matchScansLine

3-81

The provided helper function plots these two scans and the features extracted with labels. s2 is
transformed to be in the same frame based on the initial guess for relative pose.

exampleHelperShowLineFeaturesInScan(s1, s2, debugInfo, initGuess);

Use the estimated relative pose from matchScansLine to transform s2. Then, plot both scans to
show that the relative pose difference is accurate and the scans overlay to show the same
environment.

s2t = transformScan(s2,relPose);
clf
plot(s1)
hold on
plot(s2t)
hold off

Input Arguments
currScan — Current lidar scan readings
lidarScan object

Current lidar scan readings, specified as a lidarScanobject.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

3 Functions

3-82

refScan — Reference lidar scan readings
lidarScan object

Reference lidar scan readings, specified as a lidarScan object.

Your lidar scan can contain Inf and NaN values, but the algorithm ignores them.

initialRelPose — Initial guess of relative pose
[x y theta]

Initial guess of the current pose relative to the reference laser scan frame, specified an [x y
theta] vector. [x y] is the translation in meters and theta is the rotation in radians.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: "LineMergeThreshold",[0.10 0.2]

SmoothnessThreshold — Threshold to detect line break points in scan
0.1 (default) | scalar

Threshold to detect line break points in scan, specified as a scalar. Smoothness is defined by calling
diff(diff(scanData)) and assumes equally spaced scan angles. Scan points corresponding to
smoothness values higher than this threshold are considered break points. For lidar scan data with a
higher noise level, increase this threshold.

MinPointsPerLine — Minimum number of scan points in each line feature
10 (default) | positive integer greater than 3

Minimum number of scan points in each line feature, specified as a positive integer greater than 3.

A line feature cannot be identified from a set of scan points if the number of points in that set is
below this threshold. When the lidar scan data is noisy, setting this property too small may result in
low-quality line features being identified and skew the matching result. On the other hand, some key
line features may be missed if this number is set too large.

LineMergeThreshold — Threshold on line parameters to merge line features
[0.05 0.1] (default) | two-element vector [rho alpha]

Threshold on line parameters to merge line features, specified as a two-element vector [rho
alpha]. A line is defined by two parameters:

• rho –– Distance from the origin to the line along a vector perpendicular to the line, specified in
meters.

• alpha –– Angle between the x-axis and the rho vector, specified in radians.

If the difference between these parameters for two line features is below the given threshold, the line
features are merged.

MinCornerPromenance — Lower bound on prominence value to detect a corner
0.05 (default) | positive scalar

Lower bound on prominence value to detect a corner, specified as a positive scalar.

 matchScansLine

3-83

Prominence measures how much a local extrema stands out in the lidar data. Only values higher than
this lower bound are considered a corner. Corners help identify line features, but are not part of the
feature itself. For noisy lidar scan data, increase this lower bound.

CompatibilityScale — Scale used to adjust the compatibility thresholds for feature
association
0.0005 (default) | positive scalar

Scale used to adjust the compatibility thresholds for feature association, specified as a positive scalar.
A lower scale means tighter compatibility threshold for associating features. If no features are found
in lidar data with obvious line features, increase this value. For invalid feature matches, reduce this
value.

Output Arguments
relpose — Pose of current scan
[x y theta]

Pose of current scan relative to the reference scan, returned as [x y theta], where [x y] is the
translation in meters and theta is the rotation in radians.

stats — Scan matching information
structure

Scan matching information, returned as a structure with the following fields:

• Covariance –– 3-by-3 matrix representing the covariance of the relative pose estimation. The
matScansLine function does not provide covariance between the (x,y) and the theta
components of the relative pose. Therefore, the matrix follows the pattern: [Cxx, Cxy 0; Cyx
Cyy 0; 0 0 Ctheta].

• ExitFlag –– Scalar value indicating the exit condition of the solver:

• 0 –– No error.
• 1 –– Insufficient number of line features (< 2) are found in one or both of the scans. Consider

using different scans with more line features.
• 2 –– Insufficient number of line feature matches are identified. This may indicate the

initialRelPose is invalid or scans are too far apart.

debugInfo — Debugging information for line-based scan matching result
structure

Debugging information for line-based scan matching result, returned as a structure with the following
fields:

• ReferenceFeatures –– Line features extracted from the reference scan as an n-by-2 matrix.
Each line feature is represented as [rho alpha] for the parametric equation, rho = x∙cos(alpha)
+ y∙sin(alpha).

• ReferenceScanMask –– Mask indicating which points in the reference scan are used for each
line feature as an n-by-p matrix. Each row corresponds to a row in ReferenceFeatures and
contains zeros and ones for each point in refScan.

• CurrentFeatures –– Line features extracted from the current scan as an n-by-2 matrix. Each
line feature is represented as [rho alpha] for the parametric equation, rho = x∙cos(alpha) +
y∙sin(alpha).

3 Functions

3-84

• CurrentScanMask –– Mask indicating which points in the current scan are used for each line
feature as an n-by-p matrix. Each row corresponds to a row in ReferenceFeatures and contains
zeros and ones for each point in refScan.

• MatchHypothesis –– Best line feature matching hypothesis as an n element vector, where n is
the number of line features in CurrentFeatures. Each element represents the corresponding
feature in ReferenceFeaturesand gives the index of the matched feature in
ReferenceFeatures is an index match the

• MatchValue –– Scalar value indicating a score for each MatchHypothesis. A lower value is
considered a better match. If two elements of MatchHypothesis have the same index, the
feature with a lower score is used.

References
[1] Neira, J., and J.d. Tardos. “Data Association in Stochastic Mapping Using the Joint Compatibility

Test.” IEEE Transactions on Robotics and Automation 17, no. 6 (2001): 890–97. https://
doi.org/10.1109/70.976019.

[2] Shen, Xiaotong, Emilio Frazzoli, Daniela Rus, and Marcelo H. Ang. “Fast Joint Compatibility
Branch and Bound for Feature Cloud Matching.” 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016. https://doi.org/10.1109/iros.2016.7759281.

See Also
matchScans | matchScansGrid

Introduced in R2020b

 matchScansLine

3-85

bboxLidarToCamera
Estimate 2-D bounding box in camera frame using 3-D bounding box in lidar frame

Syntax
bboxesCamera = bboxLidarToCamera(bboxesLidar,intrinsics,tform)
bboxesCamera = bboxLidarToCamera(bboxesLidar,intrinsics,tform,L)
[bboxesCamera,boxesUsed] = bboxLidarToCamera(___)
[___] = bboxLidarToCamera(___ ,'ProjectedCuboid',true)

Description
bboxesCamera = bboxLidarToCamera(bboxesLidar,intrinsics,tform) estimates 2-D
bounding boxes in the camera frame from 3-D bounding boxes in the lidar frame bboxesLidar. The
function uses the camera intrinsic parameters intrinsics and a lidar to camera transformation
matrix tform.

bboxesCamera = bboxLidarToCamera(bboxesLidar,intrinsics,tform,L) further refines
the 2-D bounding boxes to the edges of the object inside it using L. L is the corresponding labeled 2-D
image of the 2-D bounding boxes, where the objects are labeled distinctively.

[bboxesCamera,boxesUsed] = bboxLidarToCamera(___) indicates for which of the specified
3-D bounding boxes the function detects a corresponding 2-D bounding box in the camera frame.

[___] = bboxLidarToCamera(___ ,'ProjectedCuboid',true) returns 3-D projected cuboids
instead of 2-D bounding boxes.

Examples

Transfer Bounding Box from Point Cloud to Image

Load ground truth data from a MAT file into the workspace. Extract the image, point cloud data, and
camera intrinsic parameters from the ground truth data.

dataPath = fullfile(toolboxdir('lidar'),'lidardata','lcc','bboxGT.mat');
gt = load(dataPath);
im = gt.im;
pc = gt.pc;
intrinsics = gt.cameraParams;

Extract the lidar to camera transformation matrix from the ground truth data.

tform = gt.camToLidar.invert;

Extract the 3-D bounding box information.

bboxLidar = gt.cuboid1;

Estimate the 2-D bounding box on the image.

bboxesCamera = bboxLidarToCamera(bboxLidar,intrinsics,tform);

3 Functions

3-86

Display the 3-D bounding box overlaid on the point cloud.

pcshow(pc.Location,pc.Location(:,1))
showShape('cuboid',bboxLidar)

Display the 2-D bounding box overlaid on the image.

J = undistortImage(im,intrinsics);
annotatedImage = insertObjectAnnotation(J,'Rectangle',bboxesCamera,'Vehicle');
imshow(annotatedImage)

 bboxLidarToCamera

3-87

Project 3-D Bounding Box from Point Cloud to Image

Load ground truth data from a MAT file into the workspace. Extract the image, point cloud data, and
camera intrinsic parameters from the ground truth data.

dataPath = fullfile(toolboxdir('lidar'),'lidardata','lcc','bboxGT.mat');
gt = load(dataPath);
im = gt.im;
pc = gt.pc;
intrinsics = gt.cameraParams;

Extract the lidar to camera transformation matrix from the ground truth data.

tform = gt.camToLidar.invert;

Extract the 3-D bounding box information.

bboxLidar = gt.cuboid2;

Estimate the projected 3-D bounding box on the image.

3 Functions

3-88

bboxesCamera = bboxLidarToCamera(bboxLidar,intrinsics,tform,...
 'ProjectedCuboid',true);

Display the 3-D bounding box overlaid on the point cloud.

figure
pcshow(pc.Location,pc.Location(:,1))
showShape('cuboid',bboxLidar)

Display the 3-D projected bounding box overlaid on the image.

J = undistortImage(im,intrinsics);
h = imshow(J);
pcH = vision.roi.ProjectedCuboid;
pcH.Parent = h.Parent;
pcH.Position = bboxesCamera;

 bboxLidarToCamera

3-89

Input Arguments
bboxesLidar — 3-D bounding boxes in lidar frame
cuboidModel object | N-by-9 matrix of real values

3-D bounding boxes in the lidar frame, specified as a cuboidModel object or an N-by-9 matrix of real
values. N is the number of 3-D bounding boxes. Each row of the matrix has the form [xctr yctr zctr xlen
ylen zlen xrot yrot zrot].

• xctr, yctr, and zctr — These values specify the x-, y-, and z-axis coordinates, respectively, of the
center of the cuboid bounding box.

• xlen, ylen, and zlen — These values specify the length of the cuboid along the x-, y-, and z-axis,
respectively, before it is rotated.

• xrot, yrot, and zrot — These values specify the rotation angles of the cuboid around the x-, y-, and z-
axis, respectively. These angles are clockwise-positive when you look in the forward direction of
their corresponding axes.

This figure shows how these values determine the position of a cuboid.

3 Functions

3-90

Note The function assumes that the point cloud data that corresponds to the 3-D bounding boxes and
the image data are time synchronized.

Data Types: single | double

intrinsics — Camera intrinsic parameters
cameraIntrinsics object

Camera intrinsic parameters, specified as a cameraIntrinsics object.

tform — Camera to lidar rigid transformation
rigid3d object

Camera to lidar rigid transformation, specified as a rigid3d object.

L — Labeled 2-D image
matrix of real values

Labeled 2-D image, specified as a matrix of real values. The matrix size is the same as the
ImageSize property of intrinsics.

Note Labeled images are assumed to be undistorted.

 bboxLidarToCamera

3-91

Data Types: single | double | int8 | int16 | uint8 | uint16

Output Arguments
bboxesCamera — 2-D bounding boxes in camera frame
M-by-4 matrix of real values | M-by-8 matrix of real values

2-D bounding boxes in the camera frame, returned as an M-by-4 matrix of real values. M is the
number of detected bounding boxes. Each row of the matrix contains the location and size of a
rectangular bounding box in the form [x y width height]. The x and y elements specify the x and y
coordinates, respectively, for the upper-left corner of the rectangle. The width and height elements
specify the size of the rectangle.

If 'ProjectedCuboid' is set to true, the 2-D bounding boxes are returned as an M-by-8 matrix of
real values. The bounding boxes have a cuboid shape and enclose the object. Each row of the matrix
contains the size and location of the cuboid bounding box in the form [frontFace backFace]. Both the
faces are represented as 2-D bounding boxes.
Data Types: single | double

boxesUsed — Bounding box detection flag
N-element row vector of logicals

Bounding box detection flag, returned as an N-element row vector of logicals. 2 is the number of
input 3-D bounding boxes. If the function detects a corresponding 2-D bounding box in the camera
frame, then it returns a value of true for that input 3-D bounding box. If the function does not detect
a corresponding 2-D bounding box, then it returns a value of false.
Data Types: logical

See Also
Functions
bboxCameraToLidar | fuseCameraToLidar | projectLidarPointsOnImage

Introduced in R2021a

3 Functions

3-92

segmentGroundSMRF
Segment ground from lidar data using SMRF algorithm

Syntax
groundPtsIdx = segmentGroundSMRF(ptCloud)
groundPtsIdx = segmentGroundSMRF(ptCloud,gridResolution)
[groundPtsIdx,nonGroundPtCloud,groundPtCloud] = segmentGroundSMRF(___)
[___] = segmentGroundSMRF(___ ,Name,Value)

Description
groundPtsIdx = segmentGroundSMRF(ptCloud) segments the input point cloud, ptCloud into
ground and non-ground points and returns a logical matrix or vector groundPtsIdx. The function
sets the ground point indices to true and true for non-ground points.

groundPtsIdx = segmentGroundSMRF(ptCloud,gridResolution) additionally specifies the
dimension of the grid element.

[groundPtsIdx,nonGroundPtCloud,groundPtCloud] = segmentGroundSMRF(___)
additionally returns ground points and non-ground points as individual pointCloud objects. Use this
syntax with any of the input argument combinations in previous syntaxes.

[___] = segmentGroundSMRF(___ ,Name,Value) specifies options using one or more name-
value arguments. For example, 'ElevationThreshold',0.4 sets the elevation threshold for
identifying non-ground points to 0.4.

Examples

Segment Ground in Aerial Lidar Data

Segment the ground in an unorganized aerial point cloud.

Create a lasFileReader object to access the LAS file data.

fileName = fullfile(toolboxdir('lidar'), 'lidardata', 'las', ...
 'aerialLidarData2.las');
lasReader = lasFileReader(fileName);

Read point cloud data from the LAS file using the readPointCloud function.

ptCloud = readPointCloud(lasReader);

Segment ground data from the point cloud.

[groundPtsIdx,nonGroundPtCloud,groundPtCloud] = segmentGroundSMRF(ptCloud);

Visualize the ground and non-ground points.

figure
pcshowpair(groundPtCloud, nonGroundPtCloud)

 segmentGroundSMRF

3-93

Segment Ground in Point Cloud Data

Segment the ground in an organized point cloud. The point cloud was captured in a highway
scenario.

Load the point cloud data into the workspace.

ld = load('drivingLidarPoints.mat');

Segment ground data from the point cloud.

[~,nonGroundPtCloud,groundPtCloud] = segmentGroundSMRF(...,
 ld.ptCloud,'ElevationThreshold',0.1,'ElevationScale',0.25);

Visualize ground and non-ground points.

figure
pcshowpair(groundPtCloud,nonGroundPtCloud)
xlim([-60 60])
ylim([-50 50])

3 Functions

3-94

Input Arguments
ptCloud — Point cloud data
pointCloud object

Point cloud data, specified as a pointCloud object.

gridResolution — Dimension of each grid element
1 (default) | positive scalar

Dimension of each grid element, specified as a positive scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'ElevationThreshold',0.4 sets the elevation threshold to identify non-ground points to
0.4.

MaxWindowRadius — Maximum radius of structuring element
18 (default) | positive scalar

 segmentGroundSMRF

3-95

Maximum radius of the disk-shaped structuring element in the morphological opening operation,
specified as a positive scalar. Increase this value to segment large buildings as non-ground at the
expense of additional computation.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

SlopeThreshold — Slope threshold to identify non-ground grid elements
0.15 (default) | nonnegative scalar

Slope threshold to identify non-ground grid elements in the minimum elevation surface map, specified
as a nonnegative scalar. The function classifies a grid element as non-ground if its slope is greater
than SlopeThreshold. Increase this value to classify steep slopes as ground.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ElevationThreshold — Elevation threshold to identify non-ground points
0.5 (default) | nonnegative scalar

Elevation threshold to identify non-ground points, specified as a nonnegative scalar. The function
classifies a point as non-ground if the elevation difference between the point and estimated ground
surface is greater than ElevationThreshold. Increase this value to encompass more points from
bumpy ground.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

ElevationScale — Elevation threshold scaling factor
1.25 (default) | nonnegative scalar

Elevation threshold scaling factor with respect to the slope of the estimated ground surface, specified
as a nonnegative scalar. Increase this value to identify ground points on steep slopes.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
groundPtsIdx — Binary map of segmented point cloud
logical matrix | logical vector

Binary map of the segmented point cloud, returned as a logical matrix for organized point clouds, and
as a logical vector for unorganized point clouds. The function sets the locations of ground points in
the matrix to true and non-ground points to false.

nonGroundPtCloud — Point cloud of non-ground points
pointCloud object

Point cloud of non-ground points, returned as a pointCloud object.

groundPtCloud — Point cloud of ground points
pointCloud object

Point cloud of ground points, returned as a pointCloud object.

Algorithms
A simple morphological filter (SMRF) algorithm [1] segments point cloud data into ground and non-
ground points. The algorithm is divided into three stages:

3 Functions

3-96

1 Create a minimum elevation surface from the point cloud data.
2 Segment the surface into ground and non-ground grid elements.
3 Segment the original point cloud data.

Minimum Surface Creation

1 Divide the point cloud data into a grid along the xy-dimension (bird's eye view). Specify the grid
element dimension using gridResolution.

2 Find the lowest elevation (Zmin) value for each grid element (pixel).
3 Combine all the Zmin values into a 2-D matrix (raster image) to create a minimum elevation

surface map.

Surface Map Segmentation

1 Apply a morphological opening operation on the minimum surface map. For more information
about morphological opening, see “Types of Morphological Operations”.

2 Use a disk-shaped structuring element with a radius of 1 pixel. For more information, see
“Structuring Elements”.

3 Calculate the slope between the minimum surface and opened surface maps at each grid
element. If the difference is greater than elevation threshold, classify the pixel as non-ground.

4 Execute steps 1 through 3 iteratively. Increase the structuring element radius by 1 pixel in each
iteration until it reaches the maximum radius specified by MaxWindowRadius.

5 The end result of the iteration process is a binary mask where each pixel is classified as being
either ground or non-ground.

Point Cloud Segmentation

1 Apply the binary mask on the original minimum surface map to eliminate non-ground grids.
2 Fill the unfilled grids using image interpolation techniques to create an estimated elevation

model.
3 Calculate the elevation difference between each point in the original point cloud and the

estimated elevation model. If the difference is greater than ElevationThreshold, classify the
pixel as non-ground.

References
[1] Pingel, Thomas J., Keith C. Clarke, and William A. McBride. “An Improved Simple Morphological

Filter for the Terrain Classification of Airborne LIDAR Data.” ISPRS Journal of
Photogrammetry and Remote Sensing 77 (March 2013): 21–30. https://
www.sciencedirect.com/science/article/abs/pii/S0924271613000026?via%3Dihub.

See Also
Functions
pcsegdist | segmentGroundFromLidarData | segmentLidarData

Objects
lasFileReader

 segmentGroundSMRF

3-97

https://www.sciencedirect.com/science/article/abs/pii/S0924271613000026?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0924271613000026?via%3Dihub

Introduced in R2021a

3 Functions

3-98

transformScan
Transform laser scan based on relative pose

Syntax
transScan = transformScan(scan,relPose)

[transRanges,transAngles] = transformScan(ranges,angles,relPose)

Description
transScan = transformScan(scan,relPose) transforms the laser scan specified in scan by
using the specified relative pose, relPose.

[transRanges,transAngles] = transformScan(ranges,angles,relPose) transforms the
laser scan specified in ranges and angles by using the specified relative pose, relPose.

Examples

Transform Laser Scans

Create a lidarScan object. Specify the ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Translate the laser scan by an [x y] offset of (0.5,0.2).

transformedScan = transformScan(refScan,[0.5 0.2 0]);

Rotate the laser scan by 20 degrees.

rotateScan = transformScan(refScan,[0,0,deg2rad(20)]);

Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector in meters. These range values are distances from a
sensor at specified angles. The vector must be the same length as the corresponding angles vector.

 transformScan

3-99

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the specific
angles of the specified ranges. The vector must be the same length as the corresponding ranges
vector.

relPose — Relative pose of current scan
[x y theta]

Relative pose of current scan, specified as [x y theta], where [x y] is the translation in meters
and theta is the rotation in radians.

Output Arguments
transScan — Transformed lidar scan readings
lidarScan object

Transformed lidar scan readings, specified as a lidarScan object.

transRanges — Range values of transformed scan
vector

Range values of transformed scan, returned as a vector in meters. These range values are distances
from a sensor at specified transAngles. The vector is the same length as the corresponding
transAngles vector.

transAngles — Angle values from scan data
vector

Angle values of transformed scan, returned as a vector in radians. These angle values are the specific
angles of the specified transRanges. The vector is the same length as the corresponding ranges
vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
lidarScan | matchScans | matchScansGrid

Topics
“Build Map from 2-D Lidar Scans Using SLAM”

Introduced in R2021a

3 Functions

3-100

	Apps
	Lidar Labeler
	Lidar Camera Calibrator

	Objects
	eigenFeature
	pcmapsegmatch
	addView
	deleteSegments
	deleteView
	findPose
	findView
	hasView
	isInsideSubmap
	selectSubmap
	show
	updateMap
	cuboidModel
	findPointsInsideCuboid
	getCornerPoints
	plot
	groundTruthLidar
	changeFilePaths
	selectLabels
	selectLabelsByGroup
	selectLabelsByName
	selectLabelsByType
	ibeoLidarReader
	readMessages
	labelDefinitionCreatorLidar
	addAttribute
	addLabel
	create
	editAttributeDescription
	editGroupName
	editLabelDescription
	editLabelGroup
	info
	removeAttribute
	removeLabel
	vision.labeler.loading.MultiSignalSource
	vision.labeler.loading.PointCloudSequenceSource
	vision.labeler.loading.VelodyneLidarSource
	lidar.labeler.loading.LasFileSequenceSource
	lidar.labeler.loading.RosbagSource
	lidar.syncImageViewer.SyncImageViewer
	lidar.syncImageViewer.SyncImageViewer.close
	lidar.syncImageViewer.SyncImageViewer.dataSourceChangeListener
	lidar.syncImageViewer.SyncImageViewer.disconnect
	lidar.syncImageViewer.SyncImageViewer.frameChangeListener
	lidar.syncImageViewer.SyncImageViewer.updateLabelerCurrentTime
	lasFileReader
	readPointCloud
	lidarScan
	plot
	removeInvalidData
	rangeSensor
	lidar.labeler.loading.CustomPointCloudSource

	Functions
	extractEigenFeatures
	pcfitcuboid
	extractFPFHFeatures
	pcmedian
	estimateCheckerboardCorners3d
	detectRectangularPlanePoints
	estimateLidarCameraTransform
	projectLidarPointsOnImage
	fuseCameraToLidar
	bboxCameraToLidar
	pcmatchfeatures
	pcshowMatchedFeatures
	squeezesegv2Layers
	matchScans
	matchScansGrid
	matchScansLine
	bboxLidarToCamera
	segmentGroundSMRF
	transformScan

